• Title/Summary/Keyword: steady shear

Search Result 267, Processing Time 0.024 seconds

Physicochemical, Microbial, Rheological, and Sensory Properties of Yogurt Added with Yuza Pectin Extract (유자펙틴 추출물을 첨가한 요구르트의 이화학적, 미생물학적, 유변학적 및 관능적 품질 특성)

  • Yoon, Mi-Ra;Seo, Jeong-Yun;Ryu, Ga-Eun;Kim, Yeon-Ho;Seo, Moon-Cho;Chang, Yoon Hyuk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.562-568
    • /
    • 2016
  • This study investigated the effects of Yuza pectin extract (0, 0.1, 0.15, and 0.2%, w/v) on the physicochemical, microbial, rheological, and sensory properties of yogurt. Pectin extract was extracted from Yuza peel by using citrate after juicing the flesh. The total sugar content of Yuza pectin was 89.07%. The pH of Yuza pectin extract-added yogurt was 4.43. All Yuza pectin extract-added yogurt samples showed shear-thinning flow behaviors (n=0.33~0.44). The values for apparent viscosity ($0.34{\sim}0.47Pa{\cdot}s$), consistency index ($4.48{\sim}10.25Pa{\cdot}s^n$), yield stress (6.56~17.61 Pa), storage modulus (47.96~75.21 Pa), and loss modulus (19.79~26.06 Pa) for 0.1~0.2% (w/v) Yuza pectin extract-added yogurt were considerably higher than those of the control. These result indicated that Yuza pectin extract could enhance steady and dynamic shear rheological properties of yogurt. The sensory scores of Yuza pectin extract-added yogurt were higher than those of the control.

Foams for Aquifer Remediation: Two Flow Regimes and Its Implication to Diversion Process

  • Kam, Seung-Ihl;Jonggeun Choe
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Foam reduces the mobility of gas phase in porous media to overcome gravity override and to divert acid into desired layers in the petroleum industry and to enhance the efficiency of environmental remediation. Recent experimental studies on foam show that foam exhibits a remarkably different flow rheology depending on the flow regime. This study, for the first time, focuses on the issues of foam diversion process under the conditions relevant to groundwater remediation, combining results from laboratory linear-flow experiments and a simple numerical model with permeability contrasts. Linear flow tests performed at two different permeabilities (k = 9.1 and 30.4 darcy) confirmed that two flow regimes of steady-state strong foams were also observed within the permeability range of shallow geological formations. Foam exhibited a shear-thinning behavior in a low-quality regime and near Newtonian rheology in a high-quality regime. Data taken from linear flow tests were incorporated into a simple numerical model to evaluate the efficiency of foam diversion process in the presence of permeability contrasts. The simple model illustrated that foam in the high-quality regime exhibited a successful diversion but foam in the low-quality regime resulted in anti-diversion, implying that only foam in the high-quality regime would be applicable to the diversion process. Sensitivity study proved that the success of diversion process using foam in the high-quality regime was primarily controlled by the limiting capillary pressures (${P_c}{^*}$) of the two layers of interest. Limitations and implications are also discussed and included.

Numerical Modeling of Circulation in Lake Paldang (팔당호의 수치 순환모형)

  • Yoon, Tae Hoon;Kim, Min Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.317-324
    • /
    • 1994
  • The circulation of Lake Paldang is analysed numerically as an ultimate goal to develop a vehicle predicting the dispersion and concentration of pollutants and sediment flowed into the lake. In finite difference formulation of 2-D depth averaged governing equations. Abbott's 3-time level scheme is employed and for nonlinear terms time centering iteration technique in time and space is used. Model parameters for shear stresses and eddy diffusivities are determined through measured data in and near the lake. Predicted velocities for steady flow are shown to be close to the measured velocities and further improved by taking into account of wind effect. This indicates that the wind effect is needed for proper circulation analysis and it calls for the inclusion of the wind effect. Simulated results of unsteady flow caused by flood inflows and release through Paldang dam are found to characterize the flow features quite well as expected. This implies that the developed model can be used as a tool to analysing the circulation in the lake.

  • PDF

Study on the Sheet Rolling by a Rigid-Plastic Finite Element Method Considering Large Deformation Formulation (강소성 대변형 유한요소법을 이용한 판재 압연연구)

  • 김동원;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.145-153
    • /
    • 1991
  • A numerical simulation of the nonsteady state rolling process in the plane strain condition is presented in the basis of the rigid-plastic finite element method by considering large deformation. In order to apply the large deformation theory to the numerical method for sheet rolling problems, constitutive equation relating 2nd-Piola Kirchhoff stress and Lagrangian strain which reflect geometrical nonlinearity is used. To confirm the validity of the developed algorithm, the analysis of the neutral flow region, roll separating force, torque, pressure and stress/strain distributions on the workpiece is conducted from the bite of the material until the steady state is reached. The computed results of the roll force and torque in the present finite element analysis are lower than those corresponding to small strain theory. The pressure distribution at the work piece-roll interface is found to show the typical 'friction hill' type only. The peak value in near the neutral region, however, is good agrements with the existing results. the neutral region, however, is good agrements with the existing results. The frictional force at the roll interface provide detailed information about the neutral point where the shear forces change direction. In addition, the analysis also includes the effect and influence of material condition, strip thickness, work roll diameter, as well as roll speed and lubricant on each deformation process.

Mixing Process of Double Diffusive Salt Wedge (이중확산의 영향을 받는 염수침입의 혼합과정 연구)

  • Hwang, Jin-Hwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.92-97
    • /
    • 2008
  • Salt wedge into the river from the sea or fresh water flume (fresh wedge) in the ocean from the sea has density current characteristics. However, when temperature and salinity simultaneously determine the density of wedges, one of salinity and temperature can distributed in the reversed profiles against gravity, even though the density profile is stable. In this case, the double diffusive process is critical in determining mixing rate. The present work studies relative contribution of shear driven mechanical mixing component and double diffusive layering process, when warm salty denser water is introduced into the cold fresh lighter water column. Laboratory experiment releases warm salty denser water into cold fresh lighter water controlling discharge amount to achieve the steady state of density current. When longitudinal density rate becomes 15, the released amount ratio of salt and heat changes sharply and in the releasing point, vigorous mixing occurs with increase of discharged amount due to double diffusion. Double diffusion distabilizes gravitational stability and enhances the mixing rate up to $6{\times}10$ times at the lower density ratio comparing to the higher density ratio.

  • PDF

Physicochemical and Sensory Properties of Yogurt Supplemented with Corni fructus during Storage

  • Noh, Hyo Ju;Seo, Hye Min;Lee, Jun Ho;Chang, Yoon Hyuk
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • This study was carried out to determine a possibility of adding Corni fructus extract (CFE) into yogurt for improving the neutraceutical properties of yogurt and the effects of adding CFE (2~6%, v/v) on the physicochemical and sensory properties of the products during a 15-day storage period at $4^{\circ}C$. Incorporation of CFE into the yogurt samples resulted in a significant pH reduction and a significant increase in titratable acidity. When evaluating the color of the yogurt, the $L^*$-values were not significantly influenced by CFE supplementation; however, the $a^*$- and $b^*$-values significantly increased with the addition of CFE during storage. The power law and Casson models were applied to assess the flow behavior of CFE-added yogurt samples. The magnitudes of apparent viscosity (${\eta}_{a,100}$), consistency index (K), and yield stress (${\sigma}_{oc}$) for 4~6% CFE yogurt samples were significantly greater than those for the control, indicating that CFE can be used as a thickening agent for yogurt. The sensory test revealed that addition of CFE (2~4%) to yogurt did not significantly affect the overall scores, but the overall preference score for 6% CFE yogurt was significantly decreased. Based on the data obtained from the present study, we concluded that the concentrations (2~4%) of CFE could be used to produce a CFE-added yogurt without the significantly adverse effects on the physicochemical and sensory properties.

Influence of Pore Pressure Behind a Subsea Tunnel on Its Stability (터널 배면의 간극수압이 해저터널의 안정성에 미치는 영향)

  • You, Kwang-Ho;Lee, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.355-363
    • /
    • 2006
  • In this study, it was analyzed how the pore pressure behind a subsea tunnel influences on the stability of the tunnel. The tunnel is located in the soft rock layer, and a soft sandy layer and weathered soil layer are located on the top of it. Coupled numerical analyses are performed for both drained and undrained condition with varying coefficients of lateral earth pressure. In the case of undrained conditions, the stability of the tunnel was analyzed with different thicknesses of shotcrete. On the other hand, a sensitivity analysis was performed with different hydraulic conductivities and porosities of the shotcrete for the drained conditions. The stability of a subsea tunnel was evaluated in terms of safety factor suggested by You et al.(2000, 2001, 2005) based on the shear strength reduction technique. In this paper, the safety factor of a tunnel was calculated under steady state flow condition during hydro-mechanical coupled analysis. As a result, it was found that the stability of a subsea tunnel could be rather increased by allowing a proper amount of groundwater inflow into a subsea tunnel.

Effects of Compound Angle, Diffuser Angle, and Hole Pitch on Film-cooling Effectiveness (막냉각 홀의 측면 방향 분사각, 확장각 및 주기가 막냉각 효율에 미치는 영향)

  • Kim, Sun-Min;Lee, Ki-Don;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.903-913
    • /
    • 2011
  • A numerical study is carried out to analyze the steady three-dimensional turbulent flow through cylindrical and fan-shaped holes and the film cooling of these holes at low and high blowing ratios. Compressible Reynoldsaveraged Navier-Stokes equations and the energy equation are solved using a finite-volume-based solver, and a shearstress transport model is used as the turbulence closure. The effects of the compound angle, pitch to diameter ratio, and lateral expansion angle of the hole on the film-cooling effectiveness are evaluated by the film-cooling effectiveness. It is observed that the compound angle of the hole enhances the film performance for the cylindrical hole, and a small hole pitch induces interactions between the coolants from the adjacent holes, thus reducing the film-cooling performance.

An Experimental Study on the Flame Characteristics of the Air/$C_3$$H_8$ Premixed Flame Using Large Axial Mean Velocity Variation (급격한 평균유속 변동에 의한 관내 Air/$C_3$$H_8$ 예혼합 화염의 소화특성에 관한 실험적 연구)

  • Kim, Nam-Il;Lee, Eun-Do;Sin, Hyeon-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.540-545
    • /
    • 2001
  • Many previous researches on the premixed flame in a tube have treated the unsteady flame behaviors in which the shape, position and intensity of the flame varied, but more detail and fundamental research has been necessary. The flame stabilization condition in a tube, a unique steady state, and the unsteady behaviors, using the stabilization condition as an initial condition, were carried out in recent years. In this paper, propane-air premixed flame was stabilized in a tube and the flame behavior was observed when the mean velocity variation was imposed into the opposite direction of the initial mean velocity. The velocity variation is larger than the burning velocity and longer than the reaction time scale. During the period of the velocity variation flame is not extinguished. But after the period of the mean velocity variation the flame could be re-stabilized or be extinguished depending on the experimental conditions: equivalence ratio, period of velocity variation and magnitude of velocity variation. The extinction mechanisms were classified into the two cases, one is caused by the flame stretch in the shear layer near the wall, and the other is caused by the vortices and vortexes, which are generted by the acoustic waves.

Effect of Mixing Shear on Flocculation of Anionic PAM and Cationic Starch Adsorbed PCC and Its Effect on Paper Properties (교반 속도가 음이온성 PAM과 양이온성 전분으로 도포된 경질탄산칼슘의 응집과 종이 물성에 미치는 영향)

  • Choi, Do-Chim;Won, Jong Myoung;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.53-60
    • /
    • 2015
  • The effects of stirring speed during filler modification by dual polymers on flocculation and reflocculation of PCC (precipitated calcium carbonate) particles and its effect on handsheet properties were elucidated. PCC surface was modified by adsorbing A-PAM (anionic polyacrylamide) and C-starch (cationic starch) in series at various stirring speeds. It was found that increasing stirring speed during filler modification decreased the initial floc size of PCC. Continuous stirring with the same speed for filler modification resulted in the decrease of a floc size, eventually reached a steady state. The variations in a floc size was influenced by the stirring speed during filler modification: the lower the stirring speed during filler modification, the larger the floc size variations. Conclusively, the stability of PCC floc could be improved by increasing the stirring speed. In addition, the stirring speed influenced the handsheet properties. The smaller the PCC floc, the lower the strength of handseet. However, too much larger floc size also deteriorated paper strength. There exists an optimum floc size in term of paper strength which shall be controlled by stirring speed during filler modification.