DOI QR코드

DOI QR Code

Effects of Compound Angle, Diffuser Angle, and Hole Pitch on Film-cooling Effectiveness

막냉각 홀의 측면 방향 분사각, 확장각 및 주기가 막냉각 효율에 미치는 영향

  • Received : 2011.04.11
  • Accepted : 2011.07.13
  • Published : 2011.09.01

Abstract

A numerical study is carried out to analyze the steady three-dimensional turbulent flow through cylindrical and fan-shaped holes and the film cooling of these holes at low and high blowing ratios. Compressible Reynoldsaveraged Navier-Stokes equations and the energy equation are solved using a finite-volume-based solver, and a shearstress transport model is used as the turbulence closure. The effects of the compound angle, pitch to diameter ratio, and lateral expansion angle of the hole on the film-cooling effectiveness are evaluated by the film-cooling effectiveness. It is observed that the compound angle of the hole enhances the film performance for the cylindrical hole, and a small hole pitch induces interactions between the coolants from the adjacent holes, thus reducing the film-cooling performance.

본 연구에서는 가스터빈 블레이드의 냉각을 위해 사용되는 막냉각 홀을 대상으로 다양한 형상변수들이 막냉각 효율에 미치는 영향을 평가하기 위한 수치적 연구를 수행하였다. 삼차원 압축성 Reynolds-averaged Navier-Stokes 해석을 수행하였으며, 난류모델로는 shear stress transport 모델이 사용되었다. 해석을 통해 홀의 형상, 측면 방향 분사각, 홀의 주기 및 분사율이 막냉각 효율에 미치는 영향이 평가되었다. 해석결과, 원통형홀의 경우 측면 방향 분사각이 존재할 때 월등히 향상된 막냉각 효율을 보여주었으며, 홴형상 홀의 경우 측면 방향 분사각이 $20^{\circ}{\sim}30^{\circ}$일 때 가장 높은 막냉각 효율을 보여주었다. 또한 홀의 주기의 변화에 따른 성능평가 결과 높은 분사율일 때가 낮은 분사율의 경우보다 홀의 주기에 의존하는 경향을 보였다.

Keywords

References

  1. Jubran, B. A. and Maiteh, B. Y., 1999, "Film Cooling and Heat Transfer from a Combination of Two Rows of Simple and/or Copound Angle Holes in Inline and/or Staggered Configuration," Heat and Mass Transfer, Vol. 34, pp. 495-502. https://doi.org/10.1007/s002310050287
  2. Saumweber, C. and Schulz, A., 2008, "Effect of Geometry Variations on the Cooling Performance of Fan-shaped Cooling Holes," Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, 9-13 June, 2008, Berlin, Germany.
  3. Yuen, C. H. N., Martinez-Botas, R. F. and Whitelaw, J. H., 2001, "Film Cooling Effectiveness Downstream of Compound and Fan-shaped Holes," Proceedings of ASME Turbo Expo 2001, 4-7 June, 2001, New Orleans, Louisiana.
  4. Brauckmann, D. and Wolfersdorf, J., 2005, "Influence of Compound Angle on Adiabatic Film Cooling Effectiveness and Heat Transfer Coefficient for a Row of Shaped Film Cooling Holes," Proceedings of GT2005 ASME Turbo Expo 2005: Power for Land, Sea and Air, 6-9 June, 2005, Reno- Tahoe, Nevada, USA.
  5. Nasir, H., Ekkad, S. V. and Acharya, S., 2001, "Effect of Compound Angle Injection of Flat Surface Film Cooling with Large Streamwise Injection Angle," Experimental Thermal and Fluid Science, Vol. 25, pp. 23-29. https://doi.org/10.1016/S0894-1777(01)00052-8
  6. Lee, H. W., Park, J. J. and Lee, J. S., 2002, "Flow Visualization and Film Cooling Effectiveness Measurements Around Shaped Holes with Compound Angle Orientations," International Journal of Heat and Mass Transfer, Vol. 45, pp. 145-156. https://doi.org/10.1016/S0017-9310(01)00112-0
  7. CHO, H. H., RHEE, D. H. and KIM, B. G., 2001, "Enhancement of Film Cooling Performance Using a Shaped Film Cooling Hole with Compound Angle Injection," JSME International Journal, Series B, Vol. 44, No. 1, 2001, pp. 99-110. https://doi.org/10.1299/jsmeb.44.99
  8. Lee, J. S. and Jung, I. S., 2002, "Effect of Bulk Flow Pulsations on Film Cooling with Compound Angle Holes," International Journal of Heat and Mass Transfer, Vol. 45, pp. 113-123. https://doi.org/10.1016/S0017-9310(01)00133-8
  9. Lee, K. D. and Kim, K. Y., 2008, "Design Optimization of a Cylindrical Film-Cooling Hole Using Neural Network Techniques," Trans. of the KSME (B), Vol. 32, No. 12, pp. 954-962. https://doi.org/10.3795/KSME-B.2008.32.12.954
  10. Lee, K. D. and Kim, K. Y., 2009, "Design Optimization of a Fan-Shaped Film-Cooling Hole Using a Radial Basis Neural Network Technique," Journal of Fluid Machinery, Vol. 12, No. 4, pp. 44-53.
  11. Jia, L., Jing, R. and Hongde, J., 2010, "Film Cooling Performance of the Embeded Holes in Trenches with Compound Angles," Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air, GT2010, 14-18 June, 2010, Glasgow, UK.
  12. Baheri, S., Alavi Tabrizi, S. P. and Jubran, B. A., 2008, "Film Cooling Effectiveness from Trenched Shaped and Compound Holes," Heat Mass Transfer, Vol. 44, pp. 989-998. https://doi.org/10.1007/s00231-007-0341-9
  13. Ekkad, S. V., Zapata D. and Han, J. C., 1997, "Film Effectiveness Over a Flat Surface With Air and C02 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method," Journal of Turbomachinery, Vol. 119, pp. 587-593. https://doi.org/10.1115/1.2841162
  14. Gritsch, M., Will Colban1, W., Heinz Schar, H. and Dobbeling, K., 2005, "Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes," Transactions of the ASME, Vol. 127, pp. 718-725.
  15. CFX-11.0 Solver Theory, Ansys inc., 2006.
  16. Menter, F. and Esch, T., 2001, "Elements of Industrial Heat Transfer Prediction," 16th Bazilian Congress of Mechnacal Engineering (COBEM), UberlandiaBrazil.
  17. Wilcox, D. D., 1986, "Multiscale Model for Turbulent Flows," In AIAA 24th Aerospace Science Meeting. American Institute of Aeronautics and Astronautics.
  18. Bardina, J. E., Huang, P. G. and Coakley, T., 1997, "Turbulence Modeling Validation," Fluid Dynamics Conference 28th, AIAA Paper 1997-2121.