• Title/Summary/Keyword: statistical parameter

Search Result 1,392, Processing Time 0.022 seconds

Statistical Distribution of Fatigue Crack Growth Rate for Friction Stir Welded Joints of Al7075-T651 (Al7075-T651의 마찰교반용접된 접합부의 피로균열전파율의 통계적 분포)

  • Ahn, Seok-Hwan;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.86-93
    • /
    • 2013
  • This paper deals with the effects of driving force and material properties on statistical distribution of fatigue crack growth rate (FCGR) for the friction stir welded joints of Al 7075-T651 aluminum plate. In this work, the statistical probability distribution of fatigue crack growth rate was analyzed by using our previous constant stress intensity factor range controlled fatigue crack growth test data. As far as this study are concerned, the statistical probability distribution of fatigue crack growth rate for the friction stir welded (FSWed) joints was found to evaluate the variability of fatigue crack growth rate for base metal (BM), heat affected zone (HAZ) and weld metal (WM) specimens. The probability distribution of fatigue crack growth rate for FSWed joints was found to follow well log-normal distribution. The shape parameter of BM and HAZ was decreased with increasing the driving force, however, the shape parameter of WM was decreased and increased with increasing the driving force. The scale parameter of BM, HAZ and WM was increased with the driving force.

Bayesian Estimation of Shape Parameter of Pareto Income Distribution Using LINEX Loss Function

  • Saxena, Sharad;Singh, Housila P.
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.33-55
    • /
    • 2007
  • The economic world is full of patterns, many of which exert a profound influence over society and business. One of the most contentious is the distribution of wealth. Way back in 1897, an Italian engineer-turned-economist named Vilfredo Pareto discovered a pattern in the distribution of wealth that appears to be every bit as universal as the laws of thermodynamics or chemistry. The present paper proposes some Bayes estimators of shape parameter of Pareto income distribution in censored sampling. Asymmetric LINEX loss function has been considered to study the effects of overestimation and underestimation. For the prior distribution of the parameter involved a number of priors including one and two-parameter exponential, truncated Erlang and doubly truncated gamma have been contemplated to express the belief of the experimenter s/he has regarding the parameter. The estimators thus obtained have been compared theoretically and empirically with the corresponding estimators under squared error loss function, some of which were reported by Bhattacharya et al. (1999).

Inference about Measure of Agreement in the General Mixture Model via Parameter Orthogonalization

  • Um, Jongseok
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.341-352
    • /
    • 2003
  • Collecting data through experiment, the observers are an import source of measurement error and the inference on the measure of agreement, say kappa, is necessary. The models commonly used are complicated general mixture model, which have many nuisance parameters. Orthogonalization of parameters reduce the effect of nuisance parameter. Orthogonalization of estimating function gives the same effect as the parameter orthogonalization. In this study, the method for orthogonalization of estimating equation is studied and applied to the Beta-binomial model to examine the properties of the estimate of kappa. As a result, the likelihood function is insensitive to the change of the nuisance parameter and bias is smaller than the result of m.1.e. when kappa has extreme values

Extended Quasi-likelihood Estimation in Overdispersed Models

  • Kim, Choong-Rak;Lee, Kee-Won;Chung, Youn-Shik;Park, Kook-Lyeol
    • Journal of the Korean Statistical Society
    • /
    • v.21 no.2
    • /
    • pp.187-200
    • /
    • 1992
  • Samples are often found to be too heterogeneous to be explained by a one-parameter family of models in the sense that the implicit mean-variance relationship in such a family is violated by the data. This phenomenon is often called over-dispersion. The most frequently used method in dealing with over-dispersion is to mix a one-parameter family creating a two parameter marginal mixture family for the data. In this paper, we investigate performance of estimators such as maximum likelihood estimator, method of moment estimator, and maximum quasi-likelihood estimator in negative binomial and beta-binomial distribution. Simulations are done for various mean parameter and dispersion parameter in both distributions, and we conclude that the moment estimators are very superior in the sense of bias and asymptotic relative efficiency.

  • PDF

Bayesian Estimation of the Two-Parameter Kappa Distribution

  • Oh, Mi-Ra;Kim, Sun-Worl;Park, Jeong-Soo;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.355-363
    • /
    • 2007
  • In this paper a Bayesian estimation of the two-parameter kappa distribution was discussed under the noninformative prior. The Bayesian estimators are obtained by the Gibbs sampling. The generation of the shape parameter and scale parameter in the Gibbs sampler is implemented using the adaptive rejection Metropolis sampling algorithm of Gilks et al. (1995). A Monte Carlo study showed that the Bayesian estimators proposed outperform other estimators in the sense of mean squared error.

Estimation of the exponentiated half-logistic distribution based on multiply Type-I hybrid censoring

  • Jeon, Young Eun;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.47-64
    • /
    • 2020
  • In this paper, we derive some estimators of the scale parameter of the exponentiated half-logistic distribution based on the multiply Type-I hybrid censoring scheme. We assume that the shape parameter λ is known. We obtain the maximum likelihood estimator of the scale parameter σ. The scale parameter is estimated by approximating the given likelihood function using two different Taylor series expansions since the likelihood equation is not explicitly solved. We also obtain Bayes estimators using prior distribution. To obtain the Bayes estimators, we use the squared error loss function and general entropy loss function (shape parameter q = -0.5, 1.0). We also derive interval estimation such as the asymptotic confidence interval, the credible interval, and the highest posterior density interval. Finally, we compare the proposed estimators in the sense of the mean squared error through Monte Carlo simulation. The average length of 95% intervals and the corresponding coverage probability are also obtained.

A convenient approach for penalty parameter selection in robust lasso regression

  • Kim, Jongyoung;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.651-662
    • /
    • 2017
  • We propose an alternative procedure to select penalty parameter in $L_1$ penalized robust regression. This procedure is based on marginalization of prior distribution over the penalty parameter. Thus, resulting objective function does not include the penalty parameter due to marginalizing it out. In addition, its estimating algorithm automatically chooses a penalty parameter using the previous estimate of regression coefficients. The proposed approach bypasses cross validation as well as saves computing time. Variable-wise penalization also performs best in prediction and variable selection perspectives. Numerical studies using simulation data demonstrate the performance of our proposals. The proposed methods are applied to Boston housing data. Through simulation study and real data application we demonstrate that our proposals are competitive to or much better than cross-validation in prediction, variable selection, and computing time perspectives.

Genetic association tests when a nuisance parameter is not identifiable under no association

  • Kim, Wonkuk;Kim, Yeong-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.663-671
    • /
    • 2017
  • Some genetic association tests include an unidentifiable nuisance parameter under the null hypothesis of no association. When the mode of inheritance (MOI) is not specified in a case-control design, the Cochran-Armitage (CA) trend test contains an unidentifiable nuisance parameter. The transmission disequilibrium test (TDT) in a family-based association study that includes the unaffected also contains an unidentifiable nuisance parameter. The hypothesis tests that include an unidentifiable nuisance parameter are typically performed by taking a supremum of the CA tests or TDT over reasonable values of the parameter. The p-values of the supremum test statistics cannot be obtained by a normal or chi-square distribution. A common method is to use a Davies's upper bound of the p-value instead of an exact asymptotic p-value. In this paper, we provide a unified sine-cosine process expression of the CA trend test that does not specify the MOI and the TDT that includes the unaffected. We also present a closed form expression of the exact asymptotic formulas to calculate the p-values of the supremum tests when the score function can be written as a linear form in an unidentifiable parameter. We illustrate how to use the derived formulas using a pharmacogenetics case-control dataset and an attention deficit hyperactivity disorder family-based example.

Structural Change and Stability in a Long-Run Parameter (장기모수의 구조변화와 안정성)

  • Kim, Tae-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.495-505
    • /
    • 2011
  • This study performs statistical tests for stability of a long-run relationship in the telecommunication market system by identifying the time path of a recursively estimated cointegration parameter. A dummy variable is used to recover stability for the period that the hypothesis of stable cointegration is rejected, and then a proper cointegrating relation is derived. A dummy variable appears to reflect the structural change in the cointegrating relation according to the analytical results for the error correction term.