The Korean Communications in Statistics Vol. 14 No. 1, 2007, pp. 33-55

Bayesian Estimation of Shape Parameter of Pareto
Income Distribution Using LINEX Loss Function

Sharad Saxenal and Housila P. Singh?

Abstract

The economic world is full of patterns, many of which exert a profound
influence over society and business. One of the most contentious is the distri-
bution of wealth. Way back in 1897, an Italian engineer-turned-economist
named Vilfredo Pareto discovered a pattern in the distribution of wealth
that appears to be every bit as universal as the laws of thermodynamics
or chemistry. The present paper proposes some Bayes estimators of shape
parameter of Pareto income distribution in censored sampling. Asymmetric
LINEX loss function has been considered to study the effects of overesti-
mation and underestimation. For the prior distribution of the parameter
involved a number of priors including one and two-parameter exponential,
truncated Erlang and doubly truncated gamma have been contemplated to
express the belief of the experimenter s/he has regarding the parameter. The
estimators thus obtained have been compared theoretically and empirically
with the corresponding estimators under squared error loss function, some
of which were reported by Bhattacharya et al. (1999).

Keywords: Pareto income distribution(PID); Bayesian estimation; Linearly-exponential
(LINEX) loss function; squared error loss function(SELF); risk; robustness; admissibility.

1. Introduction

Social scientists are coming to surprising conclusions about how riches are distributed
in societies. Their findings not only have important policy implications but also shed

1) Assistant Professor, Operations & Quantitative Methods Area, Institute of Management
Technology, Ghaziabad-201 001, Uttar Padesh, India.
Correspondence : sharad_stat@yahoo.com

2) Professor & Head, School of Studies in Statistics, Vikram University, Ujjain-456 010,
Madhya Pradesh, India.



34 Sharad Saxena and Housila P. Singh

3
5
®
g
H o
2| avete mrwsomeam
g ‘butat the higher.end, the
8 tupie drops: ofFreiaﬁvely
- .slowly, displaying § i’are&a‘s
fattailed” pmem

200 Ged  ywoo0 ygabh vSoo
_Wgﬁlﬁr’ﬁn tﬁoﬁsai‘@dsiof déi!#!é

Figure 1.1: Rich and poor in america: an example of a pareto curve

new light on the way complex social and economic networks operate. Buchanan (2002)
states, “You might expect the balance between the rich and the poor to vary widely from
country to country. Different nations, after all, have different resources and produce
different kinds of products. Some rely on agriculture, others on heavy industry, still
others on high technology. And their peoples have different backgrounds, skills, and
levels of education. Suppose that in the United States or Cuba or Thailand-or any other
country for that matter-you count the number of people worth, say, $10,000. Then you
count the number of people at many other levels of wealth, both large and small, and
you plot the results on a graph. You would find, as Pareto did, many individuals at the
lowest end of the scale and fewer and fewer as you progress along the graph toward higher
levels of wealth. But when Pareto studied the numbers more closely, he discovered that
they dwindled in a very special way toward the wealthy end of the curve: Each time you
double the amount of wealth, the number of people falls by a constant factor. The factor
varies from country to country, but the pattern remains essentially the same,” see Figure
1.1 that has been adapted from Buchanan (2002).

Pareto’s so-called fat-tailed distribution starts very high at the low end, has no bulge
in the middle at all, and falls off relatively slowly at the high end, indicating that some
number of extremely wealthy people hold the lion’s share of a country’s riches. In the
United States, for example, something like 80% of the wealth is held by only 20% of
the people. Thus the important point is that the distribution (at the wealthy end, at
least) follows a strikingly simple mathematical curve illustrating that a small fraction of
people always owns a large fraction of the wealth. One of the first papers, authored by
Pareto that dealt extensively with the quantitative estimation of income distributions
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appeared in 1896 and 1897. In these publications, Pareto specified a new probability
distribution function, which is currently known as the Pareto income distribution, and
suggested using it as a representation of income and wealth distribution (Dagum, 1988).
Pareto’s Law dealt with the distribution of income over a population. The Pareto
distribution is reverse J shaped and positively skewed with a decreasing hazard rate.
Pareto felt that this law was universal and inevitable — regardless of taxation and social
and political conditions. Pareto’s research on the distribution of income provided an an-
swer to an important question that the French and Italian scientists raised, the question
of income inequality in a given country or region and also the relative degree of inequality
between two countries. Corrado Gini opposed Pareto’s proposition that income growth
implies less income inequality and suggested that inequality indeed is an increasing func-
tion of income growth. He suggested an easily derived unit free measure that would
allow one to compare inequality across countries. This coefficient, appropriately named
the Gini index. Several other well-known economists have made “Refutations” of the law,
started with the work of Pigou (1932). Attempts have also been made to explain many
empirical phenomena using the Pareto distribution or some related form by many authors
including Hagstroem (1960), Steindl {1965) and Mandelbrot (1960, 1963, 1967). Harris
(1968) has pointed out that a mixture of exponential distributions, with parameter §—!
having a gamma distribution, and with origin at zero, gives rise to Pareto distribution.
Though Pareto originally used this distribution to describe the allocation of wealth
among individuals; however, this distribution is not limited to only describing wealth or
income distribution, but to many situations in which an equilibrium is found in the dis-
tribution of the “small” to the “large”. Outside the field of economics Pareto distribution
found in a large number of real-world situations and at times referred to as the Bradford
distribution. In many cases the Pareto distribution may be used as an approximation
to the Zipf distribution. Many socio-economic and other naturally occurring quantities
are distributed according to certain statistical distributions with very long right tails.
Examples of some of these empirical phenomena are distributions of frequencies of words
in longer texts; the sizes of human settlements (few cities, many hamlets/villages); file
size distribution of Internet traffic which uses the TCP protocol (many smaller files, few
larger ones); clusters of Bose-Einstein condensate near absolute zero; the values of oil
reserves in oil fields (a few large fields, many small fields); the length distribution in jobs
assigned supercomputers (a few large ones, many small ones); the standardized price re-
turns on individual stocks; sizes of sand particles; sizes of meteorites; numbers of species
per genus {there is subjectivity involved: the tendency to divide a genus into two or
more increases with the number of species in it); areas burnt in forest fires; occurrence
of natural resources; stock price fluctuations; size of firms; GDP per capita, and error
clustering in communication circuits. The Pareto distribution has played a major part
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in these investigations. Davis and Feldstein (1979) have viewed that the Pareto family
has potential for modeling reliability and life testing problems. It has been observed that
while the fit of the Pareto curve may be rather good at the extremities of the income
range, the fit over the whole range is often rather poor. Indeed it has a wide area of ap-
plication. Much of the statistical development on the distribution was possible through
its relation to the exponential distribution. The developments include results on both
classical and Bayes procedures — see Arnold (1983) for details.

A lot of work including Zellner (1971), Lwin (1972), Arnold and Press (1983, 1986,
1989), Geisser (1984, 1985), Nigm and Hamdy (1987), Ganguly et al. (1992), Liang
(1993), Upadhyay and Shastri (1997) and Bhattacharya et al. (1999) dealing with the
Bayesian analysis of PID have since appeared. Many authors have recognized that the
use of symmetric loss functions may be inappropriate in some of the estimation problems.
The mention may be made of Ferguson (1967), Zellner and Geisel (1968), Aitchison and
Dunsmore (1975), Varian (1975), and Berger (1980) in this regard. In the prediction
of Gini index G and average income M the estimation of shape parameter plays an
important role and thus the use of symmetric loss function might be indecorous. Over-
estimation of G or M is usually much more serious than its underestimation. Likewise,
an underestimate of PID shape # results in more serious repercussions than an overesti-
mate of §. To overcome these kinds of problems, Varian (1975) introduced a very useful
asymmetric convex loss function:

L(A) = be®® —cA —b;a,c#0,b> 0. (1.1)

It is seen that L{0) = 0. Also for a minimal to exist at A = 0, we must have ab = ¢, thus
and so (1.1) can be re-expressed as

L(A) = b[e®® —aA —1] ;a #0,b > 0. (1.2)

There are two parameters, a and b involved in (1.2) with b serving to scale the loss function
and thus acts as a scale parameter and a serving to determine its shape and thus acts
as a shape parameter. For a = 1, the function is quite asymmetric with overestimation
being more costly than underestimation. On the other hand, when a < 0, then (1.2} rises
approximately exponential on one side of zero, i.e., A < 0 and approximately linearly
on the other side, i.e., A > 0 and hence named as Linearly-Exponential (LINEX) loss
function. For small values of |a|, the function is almost symmetric and not far from
a squared error loss function (SELF) defined as L(d — ) = (6 — é)2 . A good quality
review about the LINEX loss function and its statistical applications has been presented
by Chattopadhyay et al. (2000).

Following Zellner (1986) one can find the Bayes estimator under LINEX loss function
as follows. Let A = (6 —8) denote the estimation error in using  to estimate 6 relative to
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the LINEX loss function (1.2). Assume that the posterior pdf of 6 is g*(f]z), a proper pdf
with 8 € ©, the parameter space, and where x denotes the sample and prior information.
With E, denoting posterior expectation with respect to g*(8|z), the posterior expectation
of the LINEX loss function in (1.2) is

EoL(A) = b[e*? Ege™ — a(f — Ef) — 1] (1.3)

and the value of § that maximizes (1.3), denoted by bg, is
i 1 —ab
0p = — A In(Ege %), (1.4)

provided, yes indeed, that Ege~’ exists and is finite. The general result in (1.4) can
be adopted in many problems to provide a point estimate that is optimal relative to a
LINEX loss function. The purpose of the present paper is to exploit the use of suitable
prior information in the framework of incomes of individuals over a population. The
Bayesian estimation of shape parameter of Pareto income distribution (PID) has been
performed under the LINEX loss function and its properties are studied.

2. The Model and The Sampling Scheme

Let z1,x,...,Z, be a random sample of size n drawn from Pareto income distribu-
tion specified by the probability density function:

— ome .
f(mlG)—-W ; m<z<oo, m>0, 68>0, (2.1)

where 6 is known both as Pareto’s constant and as a shape parameter and m represents
some minimum income, which acts as a scale parameter and it is assumed known here.
The Gini index and the average income corresponding to the population represented by
(2.1) are then defined as G = 1/(20 — 1) ; 8 > (1/2) and M = mb/(6 — 1) ; 0 > 1
respectively.

In the current investigation, censored sample data are considered. It is assumed
that the annual incomes of n persons are under study but the exact income figures
Z1,Z2,...,Z, are available only for those individuals whose annual incomes do not exceed
a prescribed annual income; say w(> m). Thus, the censored sample consists of (n —r)
individuals having incomes exceeding w and exact figures for these incomes are not
available. This later group consists of highly affluent persons who have very high incomes
but the exact figures are either not available or totally unreliable on account of rampant
practices of tax evasion. Before the arrival of the sample data on personal incomes, n is
predetermined but not 7, which is a random variable here.
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In other applications also it is possible, however, to face censored observations and to
be unable to observe the most extreme data. For example, the measurement of physical
phenomena, such as wind speed or earthquake intensity. Pareto family of distributions
has been deemed appropriate for this type of phenomena. However, in many extreme
situations no measurements are available, since extreme hurricanes or very destructive
earthquakes can damage the gauges. Mull over financial data, such as stock market
returns for which heavy-tailed models (like PID) have been used (De Lima, 1997). In
moments of high volatility, exactly when extreme data appear, many stock exchange
markets have rules for limiting the transactions or even for closing the market, in order to
avoid extreme oscillations. Similarly consider the study of random algorithms. In many
cases, the computing costs of some instances are so high that the algorithms have to stop
and run with different starting points — the exact computing costs are not observable
after a certain threshold (Gomes et al., 1998).

3. Bayesian Estimation of The Shape Parameter

The main tool required for the Bayesian statistical analysis of the PID (2.1) is the
product income statistic (PIS) introduced by Ganguly et al. (1992), which is defined as

P, =w""T" <ﬁ xl) . (3.1)
i=1 .

For the case when the complete sample data on personal incomes are available, we may
put r = n in (3.1). The likelihood function (LF) conditional on # and m based on
censored sampling scheme described in the previous section can be easily evaluated as

I(0) x 0" exp(—0Z,,) ; 0€0O, (3.2)
where @ = (0, 00) is the natural parameter space of § and
Zy = In(m™" Py).

Likewise Ganguly et al. (1992) and Bhattacharya et al. (1999) four prior densities
have been assumed for Bayesian estimation of @ to reflect different beliefs of experimenter
concerning the parameter. First, the one-parameter exponential prior

91(0) = Bexp(—B8) ; (0<6< ),(8>0) (3.3)

considers the natural parameter space of 4 .
The other two includes the two-parameter exponential prior and the truncated Erlang
prior respectively given by

g2(0) = Bexp{—-B0 -8} ; (0<d<O<x),(6>0) (3.4)

and  gs(0) = ﬁng;;?ﬂ()_ B8 . (0<6<8<o0),(B>0),(g=12..) (35)
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These two priors consider the situation where one can reasonably assume that the prob-
ability of lying Pareto’s constant upto a certain point say J is zero and, thereafter, the
Pareto’s constant follows the exponential distribution or Erlang distribution. For in-
stance, it is natural to assume 6 > (1/2) and @ > 1 for the existence of G and M
respectively.

The truncated Erlang prior density (3.5) is closed under the censored sampling con-
sidered here (cf. Wetherill (1961)). In other words, (3.5) seems to be a natural conjugate
(cf. ; Raiffa and Schlaifer (1961); DeGroot (1970)) for the problem at hand. It is further
noticed that the two-parameter exponential prior density (3.4) is a monotonic decreasing
function of 8. To avoid this, finally we considered the doubly truncated gamma prior

_ 0" exp(—p9)
946) = £p,28) - T(p, 6p)

that increases with @ for § < (p — 1)/ and decreases with 8 for 8 > (p — 1)/53. Hence,
it is more flexible and provides more scope to accommodate the prior beliefs of the

;(0<d<f<y<),(3>0),p=1,2,...) (3.6)

experimenter.

In (3.5), (3.6) and further, we have used the following notation for the incomplete
gamma function: I'(a,y) = fy°° u*lexp(—u)du ; y > 0. For computational ease re-
expressing this expression as

00 Yy
INa,y) = /0 u®~ L exp(—u)du — /0 u* Lexp(—u)du ; y >0

so that the first integral can be computed by Gauss-Legender integration method and
the second integral can be calculated by Gauss-Leguerre integration method. In this
paper 5-point Gauss-Legender and 5-point Gauss-Laguerre integration methods have
been considered as very little change was noted in the magnitude of the integrals if one
moves for higher points. The accuracy of these approximation methods is 99.92038%.
Under the assumption of prior density (3.3), (3.4), (3.5) and (3.6) the posterior
distributions of # can be obtained by using the Bayes’ theorem and are respectively

given by
7‘+19r _ *9
oi6le) = P ERERE L 0<0 <o) (37)
. _ Bt exp(—Bi8)
. B g+7‘0q+1‘—1 exp(—ﬂ*e) .
6i(0la) = B —SEPD ; (5<0<o) (39)
g6l = OB g (3.10)

T(p+r,v8:) —T(p+1,06.)
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where B, = 8+ Z,,-
To obtain the optimal estimates of 8 relative to L(A), we need Egexp(—a8). Denoting
these expectations as ;Eg exp(—af) ; i = 1,2, 3,4 with respect to corresponding posterior

,3* r+1
<a + ﬁ*)

B. )’"*1 T(r +1,aé + 66.)

g;(8|z) above, we obtain in that order

By exp(—af) = / €04t (8])dB
0

oo
2Byexp(-af) = [ < g5(0l0)d0 = (
)

a+,3* F(’f'+1,(5,8*)
) " T+e T ,ad + 6,
3Eg exp(—af) = /5 e™*g3(0]2)d0 = <afﬂ*) (;Z;TZ ;ﬂ*)ﬂ )

v
4Egexp(—ab) = / =g} (0)z)db
s

_( B. )T+”F(r+p,a7+7ﬁ*)—F(T+p,a5+5ﬂ*)
“\a+8s L(r+p,78:) = T(r +p,60.) '

Now, by virtue of (1.4), the Bayes estimates of 0 relative to L(A) are respectively given

by
68 = (TJ;l)ln (“;*'B*) (3.11)
oz - (2) 1n{(a;*ﬁ*>r+l oo (zlééfg)ﬂ*)} (312)
o - (D) (52) " s | @19

5 = (1 a+ B\ T(r+pvB.) ~T(r+p,86)
%= (a)ln{( B ) F(T+p,a'y+’yﬁ*)—I‘(r+p,a6+6ﬁ*)}‘ (3.14)

It is to be noted that if ¢ = 1 in (3.13) then 82 reduces to 2. But one should carefully
notice that the prior beliefs in the form of prior distributions of 8 are different.

Using (3.7), (3.8), (3.9) and (3.10), the corresponding Bayes estimators of 8, under
the assumption of the SELF, are obtained as the posterior expectations of 6 and are
respectively given by

by = ’";*1, (3.15)
s D(r+2,66,)
b2 = B.T(r+1,8B.) (3.16)

7 BT(r+4q,06.)
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- *) T 17 *
and 4=1‘(r+p+1,’yﬁ) T(r+p+1,66,)

BTG+ 7,78 T +£,08.)) (319
The estimators f, and 84 have been reported by Bhattacharya et al. (1999). The esti-
mators obtained so far either under LINEX loss function or under SELF consist of some
hyperparameters namely 3,4,~,p and q. These hyperparameters are assumed known to
avoid complexities. In case they are unknown, the reader is referred to the methods of
assessment of hyperparameters in the papers of Ganguly et al. (1992) and Bhattacharya
et al. (1999).

4. Robustness of Estimates

It is well established in statistical literature that a good estimator—either classical or
Bayesian, should be insensitive to small departures from the idealized assumptions for
which the estimator is optimized, see Launer and Wilkinson (1979) and Huber (1981).
This trait is predominantly known as robustness of estimates and is more critical in Bayes
inference as lot of so called subjectivity involved in the form of a prior distribution that
comprised of some parameters, typically known as hyperparameters to be specified prior
to estimation. In the present case there are various parameters involved, viz., a, 83, 4,~,p
and ¢, out of which the first two are of great interest as the others dealt with either
to specify the truncation of @ or to define the gamma functions. In order to meet the
constraint of brevity the assessment of robustness with regard to these parameters has not
been presented. The parameter a is the shape parameter of the LINEX loss function and
thus the proposed estimators should not be robust with respect to this parameter. On
the other hand, the parameter 3 is one of the major parameters in all prior distributions
and an ideal estimator should be robust with respect to this parameter.

To explicate the robustness of the Bayes estimators 9{3 ; 1 =1,2,3,4 against their
corresponding priors, an extensive simulation study has been carried out with the aid of a
computer program, as most of the concerned expressions are not solvable analytically. Lot
many combinations of values of n,r,a,3,4,,p and ¢ were pondered for a large number
of simulated samples but the complete results would be too hulking to present here.
A set of sample tables is presented for the following random sample of 30 observations
generated from PID (2.1) with 6 = 2.0 and m = 2.0, see Upadhyay and Shastri (1997):

Table 4.1: Ordered simulated data from PID

2.05 2.23 226 226 227 227 227 228 233 235
2.35 2.42 246 257 258 259 2.63 281 3.01 3.35
3.43 3.77 495 5.07 510 536 6.09 647 8.33 14.33
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The sampling scheme considered in this paper involves only those individuals whose
annual incomes does not exceed a prescribed annual income w. Assuming w = 5.0, the
censored sample then consists of last 7 individuals in the above table having incomes
exceeding 5.0. Thus we were left with first 23 ordered observations for consideration.
Therefore, here we have, n = 30,7 = 23 and Z,, = 12.5578. The Bayes estimates
9f ; 1 = 1,2,3,4 have been calculated for different values of a and . The other
hyperparameter(s) involved in the estimators are kept fixed at some values and the
results are displayed in Tables 4.2 to 4.5.

Table 4.2: Bayes estimates of éll’ for a = £3,+2,+1,+.5,+.2, 8 = .25, .5, .75,
1(1)5

Bla—> -3 -2 -1 -05 -02 02 05 1 2 3
25 2.1350 2.3074 1.9511 1.9114 1.8886 1.8594 1.8382 1.8043 1.7412 1.6836
50 2.0883 1.9950 1.9122 1.8741 1.8522 1.8240 1.8037 1.7710 1.7101 1.6545
75 2.0436 1.9543 1.8748 1.8382 1.8171 1.7900 1.7704 1.7389 1.6801 1.6263

1 2.0008 1.9152 1.8389 1.8037 1.7834 1.7573 1.7383 1.7080 1.6512 1.5992
2 1.8461 1.7734 1.7080 1.6776 1.6600 1.6374 1.6209 1.5944 1.5448 1.4990
3 1.7138 1.6512 1.5944 1.5680 1.5526 1.5328 1.5184 1.4951 1.4512 1.4106
4 1.5592 1.5448 1.4951 1.4718 1.4583 1.4408 1.4280 1.4074 1.3684 1.3321
5 1.4990 1.4512 1.4074 1.3868 1.3748 1.3592 1.3478 1.3294 1.2945 1.2619

Min./Max. 0.7021 0.7123 0.7213 0.7255 0.7279 0.7310 0.7332 0.7368 0.7435 0.7495

Table 4.3: Bayes estimates of 923 for a = +£3,4+2,+1,+.5,+.2, 8 = .25, .5, .75,
1(1)5,6 =1

Bl a— -3 -2 -1 -05 | -0.2 0.2 0.5 1 2 3
.25 2.1415 | 2.0463 | 1.9638 | 1.9269 | 1.9062 | 1.8800 | 1.8615 | 1.8330 | 1.7845 | 1.7489
.50 2.0964 | 2.0061 | 1.9280 | 1.8932 | 1.8737 | 1.8492 | 1.8319 | 1.8055 | 1.7615 | 1.7311
.75 2.0537 | 1.9681 | 1.8942 | 1.8615 | 1.8432 | 1.8204 | 1.8044 | 1.7801 | 1.7408 | 1.7161

1 2.0134(1.9322 | 1.8626 | 1.8319 1 1.8149 { 1.7937 | 1.7791 [ 1.7570 | 1.7225 | 1.7040
2 1.8738 | 1.8098 [ 1.7570 | 1.7349 | 1.7231 | 1.7092 | 1.7001 | 1.6881 | 1.6775 | 1.6953
3 1.7692 | 1.7225 | 1.6881 | 1.6760 | 1.6706 | 1.6659 | 1.6645 | 1.6670 | 1.6989 | 1.8203
4 1.7140 | 1.6775 | 1.6670 | 1.6695 | 1.6741 | 1.6851 | 1.6977 | 1.7307 } 1.8969 | n.d
5 1.6953 | 1.6989 | 1.7307 | 1.7638 | 1.7922 | 1.8453 | 1.9024 ( 2.0630 | n.d nd

Min./Max. | 0.7916 | 0.8198 | 0.8489 | 0.8664 | 0.8764 | 0.8861 | 0.8749 | 0.8080 | 0.8843 | 0.9313
n.d. stands for not defined
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Table 4.4: Bayes estimates of 93{9 for a = £3,£2,+1,+.5,+.2, # = .25, .5, .75,

1(1)5,6=1,g=4

Bl a— -3 -2 -1 -0.5 | -0.2 0.2 0.5 1 2 3

.25 2.4046 | 2.2960 | 2.2009 | 2.1579 | 2.1335 | 2.1026 | 2.0806 | 2.0464 | 1.9876 | 1.9440
.50 2.3530  2.2495 | 2.1589 | 2.1181 | 2.0951 | 2.0659 | 2.0453 | 2.0133 | 1.9596 | 1.9226
.75 2.3038 | 2.2053 | 2.1192 | 2.0806 | 2.0588 | 2.0314 | 2.0122 | 1.9826 { 1.9343 | 1.9047
1 2.257112.1633 1 2.0817 | 2.0453 | 2.0248 | 1.9993 | 1.9814 | 1.9544 } 1.9120 ) 1.8908
2 2.0937 | 2.0180  1.9544 | 1.9273 | 1.9128 | 1.8955 | 1.8843 | 1.8695 | 1.8590 | 1.8952
3 1.9685 | 1.9120 | 1.8695 | 1.8547 | 1.8483 | 1.8432 | 1.8424 | 1.8484 | 1.9081 | 2.2415

4 1.8908 | 1.8590 | 1.8484 | 0.8544 | 1.8631 | 1.8826 | 1.9054 | 1.9678 | 2.4380 | n.d.

5 1.8952  1.9081 | 1.9678 | 2.0301 | 2.0863 | 2.1996 | 2.3378 | 2.9083 | n.d. n.d.
Min./Max. | 0.7863 | 0.8097 | 0.8398 | 0.8594 | 0.8663 | 0.8380 | 0.7881 | 0.6356 | 0.7625 | 0.8435

n.d. stands for not defined

Table 4.5: Bayes estimates of 85 for a = +3,+2,+1,+.5,+.2, 8 = .25, .5, .75,

1(1)5,8,p=1,y=4

Bl a— -3 -2 -1 —0.5 | —0.2 0.2 0.5 1 2 3
.25 2.1285 | 2.0078 | 1.8864 | 1.8307 { 1.8003 | 1.7637 | 1.7395 | 1.7052 | 1.6558 | 1.6254
.50 2.0707(1.9498 | 1.8333 | 1.7823 | 1.7552 1 1.7232 | 1.7024 | 1.6734 | 1.6326 | 1.6084
75 2.0141 {1.8946 | 1.7851 [ 1.7395 [ 1.7158 | 1.6884 | 1.6708 | 1.6466 | 1.6135 | 1.5945
1 1.9593 | 1.8430 | 1.7424 | 1.7024 | 1.6821 | 1.6589 | 1.6443 | 1.6245 | 1.5980 | 1.5835
2 1.7702 {1 1.6834 | 1.6245 | 1.6047 | 1.5953 | 1.56852 } 1.5791 | 1.5715 1.5630 | 1.5611
3 1.6461 | 1.5980 | 1.5715 | 1.5638 | 1.5605 | 1.5574 | 1.5558 | 1.5545 | 1.5558 | 1.5624
4 1.56835 | 1.5630 | 1.5545 | 1.5531 | 1.5530 | 1.5536 | 1.5546 | 1.5572 | 1.5664 | 1.5823
5 1.5611 | 1.5558 | 1.5572 1 1.5598 | 1.5620 | 1.5656 | 1.5688 | 1.5755 | 1.5948 | 1.6261

Min./Max. | 0.7334 | 0.7749 | 0.8255 | 0.8484 | 0.8626 | 0.8809 | 0.8937 | 0.9116 | 0.9396 | 0.9604

It is to be noted that the discussion of results rest on the entire simulation study

and not only on the results, which are partially presented here. The following points of

interest are identified as some of the characteristics of the suggested Bayes estimators in

this regard:

(i) For small values of |a| , optimal Bayes estimates are not far different from those

obtained with a SELF. However, when |a| assumes appreciable values, optimal

Bayes estimates are quite different from those obtained with a symmetric loss

function SELF (results not shown) as expected.

(ii) All the proposed Bayes estimators 5 ; i = 1,2,3,4 obtained under LINEX loss
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function are very much robust for variations in 3 as the ratio of minimum to
maximum is considerably close to unity.

(iii) In most of the cases, all the four estimators overestimate ¢ when either f and a
both are substantially small or both are appreciably large.

(iv) Amongst the four proposed estimators éf has emerged as the least robust estimator
subject to variation in 3.

5. Risk Functions and Admissibility of Estimators

The risk functions of estimators éf and éi ; 1=1,2,3,4 relative to the LINEX loss
function L(A) are of interest. These risk functions are denoted by Ry (87) and Ry (6;),
where subscript L denotes risk relative to L(A). The expectations which are useful in
obtaining risk functions relative to L(A) are ;Egf ; i = 1,2,3,4 , which are actually the
posterior expectations of 8 respectively given by (3.15), (3.16), (3.17) and (3.18). Thus,
the risks of different estimators under L(A) are given by

RL(05) = b :“(’"ﬁf Y 4+ 1)m (“;f*)] (5.1)
Ru(6) =b P(E%B:)TH exp{a(rﬂj 1)} ~ 1} (5.2)

sp | al(r +2,86.) a+ BN\ T(r+1,68,)
RL(O?B)‘b_ﬂ*r(r+1,6ﬂ*)_ln{< =) F(r+1,a5+5ﬁ*)}] )

<[ 8. \"T'T(r+1,a8+3B.) al'(r +2,08,)
RL(02) =0 _(a + ﬂ*) F("' + 1,5,3*) P {ﬁ*r‘(r + 1,5,3*) } -1 (5.4)

imy _ |60 +q+1,68,) a+ B\ _T(r+4q,86,)
Rp(05) = b _ B.L(r + q,08:) ln{( B ) F(r+q,a5+5ﬂ*)}] (5:5)

-7 B8 \TT(r+4q,a6 +68.) al(r+q+1,66)) _
mb =o|(o55)  rekaany o aretaiat ) 1] (39
RL(éB) =} 'a{l"('r +p+ 1”7ﬂ*) — F(T +p+ L‘Sﬁ*)}

¢ | BAT(r +p,7B8:) —T(r + p,86.)}

—In (a+ﬂ*>r+p F(T+pa7ﬁ*) —F(T-i—p,(sﬁ*) (5 7)
B. I(r+p,ay +vB) = T(r +p,ad + 64.) '

RL(0A4) =b I:( Be )"+P F(’r‘ +p,a'y+'yﬂ*) “F(T—f-p,aﬁ-{-&ﬂ*)

a‘+13* F(T+pa718*) —F(T—i—p, 5ﬂ*)

% ex a{F(T+p+1,7ﬂ*)—r(1"+p+1,5ﬂ*)} _
ep{ BuAT(r +p,vBs) —T(r +p,60)} } 1]'

(5.8)
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It is of further interest to consider the risk functions of the estimators 62 and §; ; i =
1,2,3,4 relative to squared error loss function. These risk functions are denoted by
Rs(62) and Rs(6;) , with subscript § denoting the SELF. The expectations of interest
in this case are ;E50° ; i = 1,2, 3,4, given by

(r+1)(r+2)
B2
I'(r+3,86.)
B2L(r + 1,60.)
T(r+q9+2,608.)
B2L(r + q,60.)
L(r+p+2,76.) = T'(r+p+2,606.)
BHI(r +p,7vB.) = T(r +p,06.)}

1E0? = /0 62g}(0]x)db =

2Eg0? = /5 6295(0)z)do =

3Eq6? :/5 6293 (0)|z)do =

~y
4Ee8? = / 6293 (6|x)db =
é

The resulting risk functions of estimators 67 and §; are then given by

Rs(65) = (T - 1)2 [m <“ ;*ﬂ*)r
~(50) [(57) = () m (552) 6
_(r+D)(r+2)—(r+1)?

Rs(6y) = = (5.10)

2
N a+6\"t" I(r+1,88,) T(r +3,86.)
Rs®) = & [m{( B. ) F(r+1,a6+6ﬂ*)}] T B + 1,08,

r 3 a+B\ r+ 1,60,

" aB,I(r +1,68,) By r+1,a6 + 08.)
T(r +3,68.)T(r +1,68,) - T2(r + 2,68,)

Rs(@) = G2T2(r + 1,60.) (5:12)
2
5y 1 a+ B\ T T(r +q,a + 56,) L(r+q+2,66,)
RBs(05) = & [h‘{( . ) T(r +4,36.) H B7T(r + 4,8.)
_2T(r+q+1,88.) a+ B\ I(r +q,a8 + 58,)
a,B*F("'“qué,B*) hl{( ,8* ) F(T+q16ﬁ*) (513)
RS(éB) — F(T+Q+2a 66,)I‘(r+q, 5:6*) _P2(T+Q+11618*) (514)

B2L2(r + q,684)
2
apy _ 1 a+B.\"""  T(r+pB8.) —T(r+p,08.)
Rs(0y) = [ln{( Bu ) L(r+p,ay+76.) —T(r +p,ad + 6p.) }]
F(T +p + 2:’7ﬁ*) — F(T +p+ 275/3*)
BT (r +q,76+) —T(r +¢,68.)}
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_2{(r+p+1,98,) —T(r +p+1,66,)}
aﬂ,,{I‘(r +p, '7/8*) - F(T +p, 6/3*)}
a+B\"*"  T(r+pB.) —T(r+p,dB.)
xm{( B. ) L(r+p,ay+76.) - T(r +p,5+6ﬁ*)} (519)
R (é ) = [I‘(r+p+2,’yﬂ*)——I‘(r+p+2,5ﬁ*)
S BT (r +p,7B.) — T(r + p,68.)}
{T(r+p+1,968.) —T(r+p+1,66.))°
~ BH{T(r +p,76.) —T(r +p,08.)}2 }

It is fairly clear that an inadmissible estimator should not be used, since an estimator

(5.16)

with smaller risk can be found or it is already being available. Hence, it is now important
to evaluate the relative performance of the proposed Bayes estimators 9{3 ;1=1,2,3,4
against their corresponding SELF-contestants §; ; ¢ = 1,2,3,4. An exact analytical
study of the performance of the derived Bayes estimators is not possible because the
expressions for associated risks appear to be too complicated to obtain in nice compact
forms. Therefore, again we are left with no other better choice than simulation study as
contemplated in the foregoing section. For this reason, simulated data of Table 4.1 were
considered and the risks are compared in terms of fraction relative improvement by the
formula:

FRIL(67,0,)=1- R—L(‘—)ffl. (5.17)
Rr(6;)

The findings are presented in Figures 5.1 to 5.4 for the four proposed estimators. Bayes
estimator §5 appears to be the most beneficial in terms of risk followed by 62 . For the
estimator 9{3 , high FRIs have been observed for smaller values of 8 and larger values
of |al. Similarly, substantial gain in FRI has been observed for the estimator éf when
£ is very small and a assumes large negative values. The performance of the rest of the
two estimators, viz. 62 and 6% has not found to be that good as the other contenders,
however, considerable gain in FRIs has been observed for large negative values of a
whatever be the values of 3.

It can be further added that the Bayes estimators under SELF 6; ; 1=1,2,3,4 are
dominated in the sense of risk by their corresponding Bayes estimators under the LINEX
loss function 9{3 ; 1 =1,2,3,4 relative to L(A) showing that the Bayes estimators under
LINEX loss function proposed here are admissible for a number of choices of a and
hyperparameters involved in them. Nevertheless, our main emphasis in this paper was
to study the effects of asymmetric loss function on Bayes estimators of 8 . Owing to this
reason the comparison of risks of 0AZB ;1=1,2,3,4and 6; ; 1= 1,2,3,4 relative to SELF
has not been shown. It is underscored by the fact that we did not find many combinations
of a and consisting hyperparameters wherein ;5 i= 1,2, 3,4 was dominated by éZB ;1=
1,2,3,4.
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Figure 5.1: FRIL(62,0;) in percentage for a = £3,+2,+1,+.5,+.2, § = .25, .5,
75, 1(1)5

Figure 5.2: FRIL(92B,92) in percentage for a = £3,+2,+1,+.5,+.2, § = .25, .5,
.75, 1(1)5,56 =1
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Figure 5.3: FRIL(2,65) in percentage for a = +3,42, +1,+.5,+.2, 8 = .25, .5,
75,1(1)5, 6 =1,g =4

Figure 5.4: FRIL(F,6,) in percentage for a = £3,+2,+1,+.5,+.2, 8 = .25, .5,
75, 1(1)5, 4, p=1,7y=4
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6. The Income Distribution of Movies: An Applicative Example

‘While the personal income distribution has been a subject of study for a long time, it
is only recently that other kinds of income distribution, e.g., the income of movies, have
come under close scrutiny. Movie income distribution is of immense theoretical interest
because such a distribution clearly cannot be explained in terms of asset exchange models,
one of the more popular classes of models used for explaining the nature of personal
income distribution. As movies don’t exchange anything between themselves, one needs
a different theoretical framework to explain the observed distribution for movie income.
Even more significantly, movie income can be considered to be a measure of popularity.
Previous studies by Sornette and Zajdenweber (1999), De Vany and Walls (1999), De
Vany (2003), Sinha and Raghavendra (2004) and Sinha and Pan (2005) have shown that
the distribution of gross earnings of movies released each year follow a. distribution having
a power-law tail with Pareto constant § = 2.

In order to bring a real world application of the proposed work, data about the
US domestic grosses (income) adjusted for ticket price inflation have been considered
about 100 all time box office movies right from the years 1921 to 2006 and the data
is given in the Appendix. Adjusted gross means gross proceeds (i.e., the monies ac-
tually received by the distributor (not gross box office)} minus “off-the-top” expenses
(residuals, trade and industry dues, taxes, remittance and conversion charges, and any
costs of collecting and checking receipts). The grosses are adjusted to the estimated
2006 average ticket price of $6.40. Inflation-adjustment is done by multiplying estimated
admissions by the average ticket price. It is identified that the data follows a Pareto
distribution. Histogram and the P-P plot in Figure 6.1 clearly support the assump-
tion of a Pareto distribution. Further, the goodness-of-fit has been tested through three
test statistics, viz., Kolmogornov-Smirnov (0.1439), Anderson-Darling (3.8762) and Chi-
square (10.9350) and the null hypothesis that movie grosses follow PID has not been
rejected at 0.01 level of significance in all the three cases.

Here the sample size is n = 100. Let us consider the minimum gross in the data
as m = 2.9387. Just to make an illustration let us further presume that we want to
study only those movies whose grosses do not exceed $500 million so that w = 5 in this
case, thereby censoring 33 observations, i.e., r = 77. In this set of connections, the
product income statistics and the required quantity for likelihood function are computed
as P, = 9.93 x 10°° and Z,, = 30.3516 respectively. In so far as the choice of priors are
concerned, it is not irrational to assume the natural parameter space of 8 , i.e., # can take
any values such that 0 < 8 < oo and thereby assuming the one-parameter exponential
prior (3.3). Alternatively, one can think of assuming 0 < § < 8 <y < o0, i.e., a doubly
truncated gamma prior (3.6) also. Earlier studies have shown that Pareto’s constant is
nearly equivalent to 2 for movie grosses. If one takes a conservative estimate that 6 lies
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between 1 < 8 < 3, that is to say almost 50% over- and underguessing, it is reasonable
to assume § =1 and v = 3 in (3.6).
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Figure 6.1: Pareto probability density function and P-P plot of movie data

Table 6.1: Bayes estimates and fris of 913

Bl ao| -3 2] -1 [ -05]-02] 02 [ 05 1 2 3
25 | 2.6826 |2.6360 | 2.5699 | 2.5572 | 2.5406 | 2.5283 | 2.5283 | 2.5081 | 2.4691 | 2.4316
(18.73%)((8.46%)((2.11%)|(0.53%)|(0.08%)((0.08%)|(0.51%)|(2.02%)|(7.77%)|(16.57%)
50 | 2.6598 | 2.6139 | 2.5489 | 2.5365 | 2.5201 | 2.5080 | 2.5080 | 2.4881 | 2.4497 | 2.4127
(18.43%)|(8.32%)|(2.08%)|(0.52%)|(0.08%)|(0.08%) |(0.51%)|(1.99%) |(7.65%)|(16.33%)
75 | 2.6372 | 2.5922 | 2.5283 | 2.5160 | 2.4999 | 2.4880 | 2.4880 | 2.4684 | 2.4306 | 2.3942
(18.15%)|(8.19%)|(2.05%)| (0.51%)|(0.08%)|(0.08%)|(0.50%) |(1.96 %)|(7.53%) (16 .09%)
1 | 26151 | 2.5708 | 2.5080 | 2.4959 | 2.4800 | 2.4683 | 2.4683 | 2.4491 | 2.4118 | 2.3760
(17.87%)|(8.06%)|(2.01%)|(0.50%)|(0.08%)|(0.08%)|(0.49%)|(1.93%)|(7.42%)| (15.85%)
2 | 2.5302 |2.4888 | 2.4298 | 2.4185 | 2.4036 | 2.3926 | 2.3926 | 2.3745 | 2.3394 | 2.3057
(16.82%)|(7.57%)|(1.89%)|(0.47%)|(0.07%)|(0.07%)|(0.46 %) |(1.81%) |(6.99%)|(14.97%)
3 | 2.4507 |2.4118 | 2.3564 | 2.3458 | 2.3317 | 2.3214 | 2.3214 | 2.3043 | 2.2713 | 2.2394
(15.85%)|(7.13%)|(1.78%)| (0.44%)| (0.07%)|(0.07%)|(0.43%)(1.71%)| (6.59%)| (14.15%)
4 | 23760 |2.3394 | 2.2873 | 2.2773 | 2.2640 | 2.2543 | 2.2543 | 2.2382 | 2.2070 | 2.1769
(14.97%)|(6.72%)|(1.68%)|(0.42%)|(0.07%)|(0.07%)|(0.41%)| (1.61%) |(6.23%)|(13.40%)
5 | 2.3057 |2.2713 | 2.2222 | 2.2127 | 2.2002 | 2.1909 | 2.1909 | 2.1758 | 2.1462 | 2.1178
(14.15%)|(6.35%) |(1.58%)|(0.39%)(0.06%)|(0.06%) | (0.39%) | (1.52%) |(5.89%)|(12.71%)

Corresponding to the aforementioned two prior distributions the Bayes estimates 63

and éf have been computed under the above setup and the results are displayed in
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Table 6.2: Bayes estimates and fris of éf ford=1,p=1,v=3

Bla—] -3 —2 [ -1 [ -o5]-02] 02 [ 05 1 2 3

25 | 2.5957 | 2.5750 | 2.5546 | 2.5443 | 2.5380 | 2.5204 | 2.5228 | 2.5113 | 2.4855 | 2.4545
(9.00%) |(4.07%)|(1.04%))(0.26%)|(0.04%)|(0.04%)((0.27%) |(1.12%)| (4.75%) |(11.42%)
50 | 2.5853 | 2.5647 | 2.5442 | 2.5337 | 2.5273 | 2.5185 | 2.5116 | 2.4995 | 2.4721 | 2.4389
(9.07%) |(4.12%)|(1.06%)(0.27%)|(0.04%)|(0.04%)|(0.28%)|(1.17%) | (5.00%) |(12.08%)
75 | 2.5749 | 2.5543 | 2.5336 | 2.5228 | 2.5162 | 2.5070 | 2.4998 | 2.4870 | 2.4577 | 2.4222
(9.18%) |(4.20%)|(1.09%)(0.28%)| (0.05%)|(0.05%)|(0.30%)|(1.23%)| (5.30%) |(12.82%)
1 | 2.5644 | 2.5437 | 2.5226 | 2.5116 | 2.5047 | 2.4950 | 2.4874 | 2.4738 | 2.4424 | 2.4045
(9.36%) |(4.32%)|(1.13%)|(0.29%) |(0.05%) |(0.05%) |(0.31%) |(1.30%) | (5.64%) |(13.63%)
2 | 2.5204 | 2.4982 | 2.4738 | 2.4602 | 2.4515 | 2.4390 | 2.4290 | 2.4111 | 2.3698 | 2.3227
(10.84%)|(5.19%)|(1.42%)|(0.37%)|(0.06%)|(0.06%) (0.41%) | (1.71%)| (7.36%) |(17.27%)
3 | 2.4602 | 2.4424 | 2.4111 | 2.3931 | 2.3814 | 2.3649 | 2.3518 | 2.3286 | 2.2785 | 2.2268
(13.69%)|(6.75%)|(1.87%)|(0.49%)|(0.08%)|(0.08%)|(0.54%) (2.22%) | (9.18%) |(20.37%)
4 | 2.4045 |2.3698 | 2.3286 | 2.3055 | 2.2908 | 2.2706 | 2.2549 | 2.2284 | 2.1759 | 2.1277
(17.41%)|(8.64%)|(2-37%) (0.62%)!(0.10%)| (0.10%) |(0.64%)|(2.59%)| (10.12%)|{21.21%)
5 | 2.3227 |2.2785 | 2.2284 | 2.2020 | 2.1859 | 2.1646 | 2.1488 | 2.1234 | 2.0773 | 2.0391
(20.50%)|(9.98%)|(2.64%)|(0.67%)|(0.11%)|(0.11%)|(0.66%)|(2.57%)| (9.47%) |(19.03%)

Tables 6.1 and 6.2 for the same set of values of ¢ and 3 as of the preceding sections. The
quantities in the parenthesis are actually the fraction relative improvements (FRIs) under
LINEX loss function of the proposed Bayes estimator with respect to the corresponding
estimator under the SELF. The results are quite attractive and in line with the previous
discussions. As expected, a very little improvement has been observed in FRIs for smaller

values of |a|, whereas gain in FRIs is substantial when |a| assumes greater values.

7. Concluding Remarks

What functional form of a probability distribution function provides the closest fit
to the shape of an earnings distribution? Over the years, this question has been studied
extensively in economics as well as in other social sciences and as a result the estimation
of PID parameters is the most sought endeavor in this field. Many estimators have been
proposed so far considering a symmetric loss function. This paper considered estimation
of the shape parameter of Pareto distribution in the presence of censoring mechanism
using a decision theoretic approach by minimizing posterior loss under an asymmetric
LINEX loss function. The whole idea of the paper was to compare the proposed ap-
proach with the existing method of Bayesian estimation under SELF vis-a-vis showing
that different specifications of LINEX loss function do matter in estimating the shape
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parameter.

It is identified that neither of the proposed estimators under LINEX loss function
(i.e., éf ; © =1,2,3,4) universally dominates their counterparts under the SELF (i.e.,
éi ; 2 = 1,2,3,4) in the sense of risk. However, the merits of the proposed Bayes
estimators have been established through simulation study and an applicative example.
Contrary to this if comparison of risks has been made under the SELF, the proposed
LINEX-Bayes estimators 9{3 ; 1 =1,2,3,4 are found inadmissible in a majority of the
combinations of quantities involved against their corresponding SELF-Bayes estimators
6, ; 1=1,2,3,4. Moreover, if one put side by side the four proposed Bayes estimators,
the estimators 6B and 62 are in general found to be more efficient than the other two
estimators 923 and ésB . Though the expressions pertinent to suggested Bayes estimators
are complex and extremely difficult to analyze critically and analytically, the merits
of these estimators cannot be abjured as they produces considerably better gains in
efficiency when the shape parameter of the LINEX loss function, i.e., ja| takes appreciable
values which is a key to control over- and under estimation of PID shape that eventually

resulting in deep ramifications.
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9. Appendix

Movie Grosses Movie Grosses
(in 100 million| (in 100 million
US dollars) US dollars)
Gone with the Wind 12.93083560 | My Fair Lady 3.8400000
Star Wars 11.3996540 | The Greatest Show on Earth 3.8400000
The Sound of Music 9.1145840 | National Lampoon’s Animal House 3.8329770
E.T.: The Extra-Terrestrial 9.0786770 | Pirates of the Caribbean: Dead Man’s Chest  3.8265640
The Ten Commandments 8.3840000 | The Passion of the Christ 3.8211180
Titanic 8.2141370 |Star Wars: Episode III - Revenge of the Sith  3.8027060
Jaws 8.1970440 | Back to the Future 3.7792420
Doctor Zhivago 7.9446690 | The Lord of the Rings: The Two Towers 3.6883470
The Exorcist 7.0763950 | The Sixth Sense 3.6850640
Snow White and the Seven Dwarfs 6.9760000 {Superman 3.6709200
101 Dalmatians 6.3947040 | Tootsie 3.6418520
The Empire Strikes Back 6.2835610 |Smokey and the Bandit 3.6373070
Ben-Hur 6.2720000 |Finding Nemo 3.6055980
Return of the Jedi 6.0198020 West Side Story 3.5820980
The Sting 5.7051430 |Harry Potter and the Sorcerer’s Stone 3.5784310
Raiders of the Lost Ark 5.6410790 |Lady and the Tramp 3.5670330
Jurassic Park 5.5171740 | Close Encounters of the Third Kind 3.5568350
The Graduate 5.4729540 | Lawrence of Arabia 3.5445470



Bayesian Estimation PID Shape 53

Star Wars: Episode I - The Phantom Menace 5.4288520 | The Rocky Horror Picture Show 3.5244430
Fantasia 5.3147830 | Rocky 3.5225580
The Godfather 5.0510440 | The Best Years of Our Lives 3.5200000
Forrest Gump 5.0269190 { The Poseidon Adventure 3.5137260
Mary Poppins 5.0036360 | The Lord of the Rings: The Fellowship

of the Ring 3.5010510
The Lion King 4.9428350 | Twister 3.5000400
Grease 4.9229920 | Men in Black 3.4954670
Thunderball 4.7872000 | The Bridge on the River Kwai 3.4816000
The Jungle Book 4.7155140 | It’s a Mad, Mad, Mad, Mad Worid 3.4480270
Sleeping Beauty 4.6512680 | Swiss Family Robinson 3.4437120
Shrek 2 4.5472590 | One Flew Over the Cuckoo’s Nest 3.4358630
Ghostbusters 4.5267590 | M.A.S.H. 3.4357890
Butch Cassidy and the Sundance Kid 4.5157030 | Indiana Jones and the Temple of Doom 3.4261000
Love Story 4.4798810 | Star Wars: Episode II - Attack of the Clones 3.4219820
Spider-Man 4.4470240 | Mrs. Doubtfire 3.3718010
Independence Day 4.4332080 | Aladdin 3.3563100
Home Alone 4.3349890 | Ghost 3.2937740
Pinocchio 4.3138130 | Duel in the Sun 3.2653060
Cleopatra 4.2997420 | Pirates of the Caribbean: The curse

of the black pearl 3.2415290
Beverly Hills Cop 4.2976010 | House of Wax 3.2340430
Goldfinger 4.2432000 | Rear Window 3.2227030
Airport 4.2311220 | The Lost World: Jurassic Park 3.1942370
American Graffiti 4.2057140 | Indiana Jones and the Last Crusade 3.1626560
The Robe 4.1890910 | Terminator 2: Judgment Day 3.1140080
Around the World in 80 Days 4.1353850 | Sergeant York 3.0798840
Bambi 4.0775970 | How the Grinch Stole Christmas 3.0788370
Blazing Saddles 4.0465610 | Toy Story 2 3.0615370
Batman 4.0290960 | Top Gun 3.0496900
The Bells of St. Mary’s 4.0156860 | Shrek 3.0266010
The Lord of the Rings: The Return The Matrix Reloaded 2.9885400

of the King 3.9384410

The Towering Inferno 3.9280420 | Crocodile Dundee 2.9569570
Spider-Man 2 3.8501600 | The Four Horsemen of the Apocalypse 2.9387750

Source: http://www.bozofficemojo.com/alltime/adjusted. htm
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