• Title/Summary/Keyword: statistical parameter

Search Result 1,400, Processing Time 0.022 seconds

Test for Parameter Changes in the AR(1) Process

  • Kim, Soo-Hwa;Cho, Sin-Sup;Park, Young J.
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.417-427
    • /
    • 1997
  • In this paper the parameter change problem in the stationary time series is considered. We propose a cumulative sum (CUSUM) of squares-type test statistic for detection of parameter changes in the AR(1) process. The proposed test statistic is based on the CUSIM of the squared observations and is shown to converge to a standard Brownian bridge. Simulations are performed to evaluate the performance of the proposed statistic and a real example is provided to illustrate the procedure.

  • PDF

A Note on Admissibility and Finite Admissibility in Estimation

  • Byung Hwee Kim;Tae Ryoung Park
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.87-93
    • /
    • 1994
  • Consider the problem of estimating the parameter of the model in which an observable random variable is represented by a unknown scalar parameter plus another random variable and the parameter, sample, and decision spaces consist of all integers. We first characterize the class of all admissible estimators and then characterize the class of all finitely admissible estimators. Finally, we show that two classes are identical.

  • PDF

The Change Point Analysis in Time Series Models

  • Lee, Sang-Yeol
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.43-48
    • /
    • 2005
  • We consider the problem of testing for parameter changes in time series models based on a cusum test. Although the test procedure is well-established for the mean and variance in time series models, a general parameter case has not been discussed in the literature. Therefore, here we develop a cusum test for parameter change in a more general framework. As an example, we consider the change of the parameters in an RCA(1) model and that of the autocovariances of a linear process. We also consider the variance change test for unstable models with unit roots and GARCH models.

  • PDF

Detecting Influential Observations on the Smoothing Parameter in Nonparametric Regression

  • Kim, Choong-Rak;Jeon, Jong-Woo
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.495-506
    • /
    • 1995
  • We present formula for detecting influential observations on the smoothing parameter in smoothing spline. Further, we express them as functions of basic building blocks such as residuals and leverage, and compare it with the local influence approach by Thomas (1991). An example based on a real data set is given.

  • PDF

Bayesian Parameter :Estimation and Variable Selection in Random Effects Generalised Linear Models for Count Data

  • Oh, Man-Suk;Park, Tae-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.1
    • /
    • pp.93-107
    • /
    • 2002
  • Random effects generalised linear models are useful for analysing clustered count data in which responses are usually correlated. We propose a Bayesian approach to parameter estimation and variable selection in random effects generalised linear models for count data. A simple Gibbs sampling algorithm for parameter estimation is presented and a simple and efficient variable selection is done by using the Gibbs outputs. An illustrative example is provided.

A Method of Determining the Scale Parameter for Robust Supervised Multilayer Perceptrons

  • Park, Ro-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.3
    • /
    • pp.601-608
    • /
    • 2007
  • Lee, et al. (1999) proposed a unique but universal robust objective function replacing the square objective function for the radial basis function network, and demonstrated some advantages. In this article, the robust objective function in Lee, et al. (1999) is adapted for a multilayer perceptron (MLP). The shape of the robust objective function is formed by the scale parameter. Another method of determining a proper value of that parameter is proposed.

Robust Cross Validation Score

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.413-423
    • /
    • 2005
  • Consider the problem of estimating the underlying regression function from a set of noisy data which is contaminated by a long tailed error distribution. There exist several robust smoothing techniques and these are turned out to be very useful to reduce the influence of outlying observations. However, no matter what kind of robust smoother we use, we should choose the smoothing parameter and relatively less attention has been made for the robust bandwidth selection method. In this paper, we adopt the idea of robust location parameter estimation technique and propose the robust cross validation score functions.

Estimation of Hurst Parameter in Longitudinal Data with Long Memory

  • Kim, Yoon Tae;Park, Hyun Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.295-304
    • /
    • 2015
  • This paper considers the problem of estimation of the Hurst parameter H ${\in}$ (1/2, 1) from longitudinal data with the error term of a fractional Brownian motion with Hurst parameter H that gives the amount of the long memory of its increment. We provide a new estimator of Hurst parameter H using a two scale sampling method based on $A{\ddot{i}}t$-Sahalia and Jacod (2009). Asymptotic behaviors (consistent and central limit theorem) of the proposed estimator will be investigated. For the proof of a central limit theorem, we use recent results on necessary and sufficient conditions for multi-dimensional vectors of multiple stochastic integrals to converges in distribution to multivariate normal distribution studied by Nourdin et al. (2010), Nualart and Ortiz-Latorre (2008), and Peccati and Tudor (2005).

Monitoring the asymmetry parameter of a skew-normal distribution

  • Hyun Jun Kim;Jaeheon Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.129-142
    • /
    • 2024
  • In various industries, especially manufacturing and chemical industries, it is often observed that the distribution of a specific process, initially having followed a normal distribution, becomes skewed as a result of unexpected causes. That is, a process deviates from a normal distribution and becomes a skewed distribution. The skew-normal (SN) distribution is one of the most employed models to characterize such processes. The shape of this distribution is determined by the asymmetry parameter. When this parameter is set to zero, the distribution is equal to the normal distribution. Moreover, when there is a shift in the asymmetry parameter, the mean and variance of a SN distribution shift accordingly. In this paper, we propose procedures for monitoring the asymmetry parameter, based on the statistic derived from the noncentral t-distribution. After applying the statistic to Shewhart and the exponentially weighted moving average (EWMA) charts, we evaluate the performance of the proposed procedures and compare it with previously studied procedures based on other skewness statistics.

Test of Local Restriction on a Multinomial Parameter

  • Oh, Myongsik
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.525-534
    • /
    • 2003
  • If a restriction is imposed only to a (proper) subset of parameters of interest, we call it a local restriction. Statistical inference under a local restriction in multinomial setting is studied. The maximum likelihood estimation under a local restriction and likelihood ratio tests for and against a local restriction are discussed. A real data is analyzed for illustrative purpose.