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Abstract
This paper considers the problem of estimation of the Hurst parameter H ∈ (1/2, 1) from longitudinal data

with the error term of a fractional Brownian motion with Hurst parameter H that gives the amount of the long
memory of its increment. We provide a new estimator of Hurst parameter H using a two scale sampling method
based on Aı̈t-Sahalia and Jacod (2009). Asymptotic behaviors (consistent and central limit theorem) of the pro-
posed estimator will be investigated. For the proof of a central limit theorem, we use recent results on necessary
and sufficient conditions for multi-dimensional vectors of multiple stochastic integrals to converges in distribu-
tion to multivariate normal distribution studied by Nourdin et al. (2010), Nualart and Ortiz-Latorre (2008), and
Peccati and Tudor (2005).

Keywords: Malliavin calculus, multiple stochastic integrals, central limit theorem, Hurst parameter,
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1. Introduction

A fractional Brownian motion {BH , t ≥ 0} with Hurst parameter H ∈ (0, 1) is a centered Gaussian
process with the covariance function

E
[
BH(t)BH(s)

]
=

1
2

(
t2H + s2H − |t − s|2H

)
, t, s ≥ 0.

The Hurst parameter H ∈ (0, 1) characterizes self-similar behavior of the process. This parameter
gives the long-range dependence property of its increments and decides the regularity of the sample
paths. Hence the problem of properly estimating Hurst parameter H is imperative. Many methods for
estimating H of {BH , t ≥ 0} have been proposed to solve this problem, such as wavelets, k-variations,
variograms, maximum likelihood method and spectral methods, some of which can be found in the
book by Beran (1994).

In this paper, we consider the problem of estimation of Hurst parameter H in the following longi-
tudinal data, allowing intercept function varying over u and other coefficient β1 being constant:

Yi(t) = (β0 + ui) + β1xi(t) + BH
i (t), i = 1, . . . , d and t ∈ [0,T ], (1.1)
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where BH
i , i = 1, . . . , d, are mutually independent fractional Brownian motions with Hurst parameter

H and xi(t) is a non-random function. This paper investigates asymptotic behaviors (consistent and
central limit theorem) of an estimator of the Hurst parameter H by introducing a method based on the
ratio of two realized power variation with different sampling frequencies.

If the data {Yi(t)}, i = 1, . . . , d, have the long memory property for each series, then we may use
the model (1.1) for a statistical application. In practice, the fractional Brownian motion BH of the
Hurst parameter H ∈ (0, 1) usually depends on scale parameter σ such that

E
[
BH,σ(t)2

]
= σ2t2H , t ≥ 0 and σ > 0.

The process BH,σ(t) denote a path of a fractional Brownian motion with parameter (H, σ) ∈ (0, 1) ×
(0,∞). Suppose that we observe {Yi(t)} at times j∆n, j = 1, . . . , [T/∆n] and at cross section i =
1, . . . , d. Assume that all series in the longitudinal data have the same Hurst parameter H and σ. For
practical purpose, we have to estimate Hurst parameter H first, and then a realization, obtained by the
data Yi, of the estimator Ĥols(n, d) proposed in this paper is plugged into H in the model (1.1). The
model (1.1) becomes

Yi(t) = (β0 + ui) + β1xi(t) + ϵi(t), i = 1, . . . , d and t ∈ [0,T ], (1.2)

where the error term ϵi(t) is a fractional Brownian motion with ϵi(t + h) − ϵi(t) ∼ N(0, σ2h2Ĥols(n,d)).
After that, we may use the usual longitudinal data analysis in order to estimate the linear regression
model (1.2).

The main tool for the proof of the central limit theorem is the Malliavin calculus and the result in
Nourdin et al. (2010), which is a collection of some of the results contained in the paper by Peccati
and Tudor (2005) and Nualart and Ortiz-Latorre (2008).

2. Preliminaries

In this section, we briefly review some basic facts about Malliavin calculus for Gaussian processes.
For a more detailed reference, see Nualart (2006). Suppose that H is a real separable Hilbert space
with scalar product denoted by ⟨ · , · ⟩H. Let X = {X(h), h ∈ H} be an isonormal Gaussian process, that
is a centered Gaussian family of random variables such that E[X(h)X(g)] = ⟨h, g⟩H. If X = BH , then

E
[
BH(t)BH(s)

]
=

⟨
1[0,s], 1[0,t]

⟩
H =

1
2

(
t2H + s2H − |t − s|2H

)
.

For every q ≥ 1, let Hq be the qth Wiener chaos of X, that is the closed linear subspace of L2(Ω)
generated by {Hq(X(h)) : h ∈ H, ∥h∥H = 1}, where Hq is the qth Hermite polynomial. We define a
linear isometric mapping Iq : H⊙q → Hq by Iq(h⊗q) = Hq(X(h)), where H⊙n is the symmetric tensor
product. The following duality formula holds

E
[
FIq(h)

]
= E

[⟨DqF, h⟩H⊗q
]
, (2.1)

for any element h ∈ H⊙q and any random variable F ∈ Dq,2. Here Dq,2 is the closure of the set of
smooth random variables with respect to the norm

∥F∥2q,2 = E
[
F2

]
+

q∑
k=1

E
[∥∥∥DkF

∥∥∥2
H⊗k

]
,
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where Dk is the iterative Malliavin derivative. The linear isometric mapping Iq satisfies Iq( f ) = Iq( f̃ )
and

E
[
Ip( f )Iq(g)

]
=

{
0, if p , q,
p!⟨ f̃ , g̃⟩H, if p = q, (2.2)

where f̃ denotes the symmetrization of f .
If f ∈ H⊙p, the Malliavin derivative of the multiple stochastic integrals is given by

DzIq( fq) = qIq−1

(
fq( · , z)

)
for z ∈ [0, 1]2. (2.3)

Let {el, l ≥ 1} be a complete orthonormal system in H.
If f ∈ H⊙p and g ∈ H⊙q, the contraction f ⊗r g, 1 ≤ r ≤ p∧ q, is the element of H⊗(p+q−2r) defined

by

f ⊗r g =
∞∑

l1,...,lr=1

⟨
f , el1 ⊗ · · · ⊗ elr

⟩
H⊗r ⊗

⟨
g, el1 ⊗ · · · ⊗ elr

⟩
H⊗r . (2.4)

Notice that the tensor product f ⊗ g and the contraction f ⊗r g, 1 ≤ r ≤ p ∧ q, are not necessarily
symmetric even though f and g are symmetric. We will denote their symmetrizations by f ⊗̃g and
f ⊗̃rg, respectively. The following formula for the product of the multiple stochastic integrals will be
frequently used to prove the main result in this paper.

Proposition 1. Let f ∈ H⊙p and g ∈ H⊙q be two symmetric functions. Then

Ip( f )Iq(g) =
p∧q∑
r=0

r!
(
p
r

)(
q
r

)
Ip+q−2r( f ⊗r g). (2.5)

The main tool for the proof of our result is the Malliavin calculus and the following theorem in
Nourdin et al. (2010), which is a collection of some of the results contained in the paper by Peccati
and Tudor (2005) and Nualart and Ortiz-Latorre (2008).

Theorem 1. (Nourdin et al.et al.et al., 2010) Fix d ≥ 2 and let Σ = (κi, j)i, j=1,...,d be a d × d positive definite
matrix. Fix integers 1 ≤ q1 ≤ · · · ≤ qd. For any n ≥ 1 and i = 1, . . . , d, f (n)

i ∈ H⊙qi . Assume that

Fn =
(
Iq1

(
f (n)
1

)
, . . . , Iqd

(
f (n)
d

))
, n ≥ 1,

is such that

lim
n→∞

E
[
Iqi

(
f (n)
i

)
Iq j

(
f (n)

j

)]
= κi, j, 1 ≤ i, j ≤ d.

Then the followings are equivalent:

(i) For every 1 ≤ i ≤ d, the sequence {Iqi ( f (n)
i ), n ≥ 1} converges to a normal distribution N(0, κi,i).

(ii) For every 1 ≤ i ≤ d, limn→∞ E[(Iqi ( f (n)
i ))4] = 3κ2

i,i.

(iii) For every 1 ≤ i ≤ d and every 1 ≤ r ≤ qi − 1, limn→∞ ∥ f (n)
i ⊗r f (n)

i ∥H⊗2(qi−r) = 0.

(iv) The random vector Fn converges in distribution to a d-dimensional Gaussian vector Nd(0,Σ).
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3. Main Results

By two scale sampling method based on Aı̈t-Sahalia and Jacod (2009), we propose a statistic defined
by

U(i)
n =

∑[T/k∆n]
l=1

∣∣∣∆n
l,kYi

∣∣∣2∑[T/∆n]
l=1

∣∣∣∆n
l Yi

∣∣∣2 , (3.1)

where ∆n
l Yi = Yi(l∆n) − Yi((l − 1)∆n) and ∆n

l,kYi = Yi(lk∆n) − Yi((l − 1)k∆n) for determined positive
integer k. Assume that

(A) for all i = 1, . . . , d, |xi(t) − xi(s)| ≤ c|t − s| for a constant c > 0.

We compute a realized quadratic variation of Yi. First we write

∆1−2H
n

[T/∆n]∑
l=1

∣∣∣∆n
l Yi

∣∣∣2
= ∆1−2H

n

[T/∆n]∑
l=1

[
β2

1 {xi(l∆n) − xi ((l − 1)∆n)}2 + 2β1 {xi(l∆n) − xi((l − 1)∆n)}∆n
l BH

i +
(
∆n

l BH
i

)2
]

:= A1,n(T ) + A2,n(T ) + A3,n(T ). (3.2)

By assumption (A), the first term in (3.2) becomes, as n→ 0,∣∣∣A1,n(T )
∣∣∣ ≤ c∆2(1−H)

n → 0.

For every ε > 0, we obtain, as n→ ∞,

P
(∣∣∣A2,n(T )

∣∣∣ > ε) ≤ c∆2−2H
n

∑[T/∆n]
l=1

√
E

[(
∆n

l BH
i

)2
]

ε
≤ c∆1−H

n

ε
→ 0. (3.3)

As for the term A3,n(T ), we compute the expectation and variance of A3,n(T ). Obviously,

E
[
A3,n(T )

]
= ∆n

[
T
∆n

]
, (3.4)

and

Var
(
A3,n(T )

)
= ∆2−4H

n

[T/∆n]∑
l=1

Var
((
∆n

l BH
i

)2
)
+ ∆2−4H

n

[T/∆n]∑
l,l′=1

Cov
((
∆n

l BH
i

)2
,
(
∆n

l′B
H
i

)2
)

= 3∆2
n

[
T
∆n

]
+ ∆2

n

[T/∆n]−1∑
l=1

([
T
∆n

]
− l

) (
(l + 1)2H + (l − 1)2H − 2l2H

)
= 3∆2

n

[
T
∆n

]
+ ∆2

n

[
T
∆n

] ([ T
∆n

])2H

− 1 −
([

T
∆n

]
− 1

)2H . (3.5)
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Hence we obtain, from (3.4) and (3.5), that for every ε > 0, as n→ ∞,

P
(∣∣∣A3,n(T ) − T

∣∣∣ > ε) ≤ 2
ε
Var

(
A3,n(T )

)
+ P

(∣∣∣∣∣∣∆n

[
T
∆n

]
− T

∣∣∣∣∣∣ > ε
)
→ 0. (3.6)

Also it is clear that

∆1−2H
n

[T/k∆n]∑
l=1

∣∣∣∆n
l,kYi

∣∣∣2 p
→ k2H−1T, (3.7)

where notation
p
→ denotes the convergence in probability. From (3.6) and (3.7), it follows that for

i = 1, . . . , d,

U(i)
n

p
→ k2H−1, i.e, log

(
U(i)

n

) p
→ (2H − 1) log k. (3.8)

In this section, we consider an estimator of H obtained by applying the least square method to the
approximate relationship, given in (3.8),

log
(
U(i)

n

)
≈ (2H − 1) log k. (3.9)

Then the ordinary least square estimator Ĥols is given by

Ĥols(n, d) =

∑d
i=1 log

(
U(i)

n

)
+ d log k

d log k2 . (3.10)

Now we prove the consistency and central limit theorem of the estimator Ĥols(n) given in (3.9). Let
us set

ρH(l) =
1
2

(
|l + 1|2H + |l − 1|2H − 2|l|2H

)
.

Note that

|ρH(l)| = H(2H − 1)|l|2H−2 + o
(
|l|2H−2

)
as |l| → ∞. (3.11)

Theorem 2. Under the assumption (A), we have, as n→ ∞,

(i) Ĥols(n)
p
→ H.

(ii) If H < 3/4,

1
√
∆n

(
Ĥols(n, d) − H

) L→ N 0, σ2

d
(
T log k2)2

 ,
where σ2 is given by

σ2 = 2T (k + 1)
∑
j∈Z

ρH( j)2 − 2k−2H
∑
l∈Z

k∑
j=1

 k∑
r=1

ρH(lk + r − j)


2

.
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Proof: From (3.9), it is obvious that (i) holds. As for the proof of (ii), using the multiplication formula
of multiple stochastic integral in (2.5) yields

(k∆n)1−2H
[T/k∆n]∑

l=1

∣∣∣∆n
l,kBH

∣∣∣2 = I2( fn,k) + (k∆n) k
[

T
k∆n

]
,

∆1−2H
n

[T/∆n]∑
l=1

∣∣∣∆n
l BH

∣∣∣2 = I2(gn) + ∆n

[
T
∆n

]
,

where the kernels fn,k and gn are given by

fn,k = (k∆n)1−2H
[T/k∆n]∑

l=1

1⊗2
[(l−1)k∆n,lk∆n] and gn = ∆

1−2H
n

[T/∆n]∑
l=1

1⊗2
[(l−1)∆n,l∆n].

We will prove that for H < 3/4

∆
− 1

2
n Ai,n(T )

p
→ 0, i = 1, 2. (3.12)

Obviously, as n→ 0,

∆
− 1

2
n |A1,n(T )| ≤ c∆

3
2−2H
n → 0 for H <

3
4
. (3.13)

Let us set

Wn =

[T/∆n]∑
l=1

2β1 (xi(l∆n) − xi((l − 1)∆n))∆n
l BH

i .

We note that

Var(Wn) = 4β2
1∆

2H
n

[T/∆n]∑
l=1

(xi(l∆n) − xi((l − 1)∆n))2

+ 2β2
1∆

2H
n

[T/∆n]∑
l,l′=1

(xi(l∆n) − xi((l − 1)∆n))
(
xi

(
l′∆n

) − xi
((

l′ − 1
)
∆n

))
×

(∣∣∣l − l′ + 1
∣∣∣2H
+

∣∣∣l − l′ − 1
∣∣∣2H − 2

∣∣∣l − l′
∣∣∣2H

)
:= σ̃2

n. (3.14)

This (3.14) implies that Wn is the centered Gaussian random variable with the variance σ̃2
n. For

sufficiently large n, we estimate, from (3.11),

σ̃2
n ≤ c∆1+2H

n + ∆2+2H
n

∑
| j|<[T/∆n]

([
T
∆n

]
− | j|

) ∣∣∣∣∣∣∣ j′ + 1
∣∣∣2H
+

∣∣∣ j′ − 1
∣∣∣2H − 2| j|2H

∣∣∣∣
≤ cH,T

∆1+2H
n + ∆2+2H

n

[T/∆n]∑
j=1

∆−1
n j2H−2


≤ cH,T

{
∆1+2H

n + ∆2+2H
n

(
∆−1

n + ∆
−2H
n

)}
≤ cH,T∆

2
n. (3.15)



Estimation of Hurst Parameter in Longitudinal Data with Long Memory 301

For every ε > 0, we obtain, from (3.15), that, as n→ ∞,

P
(
∆
− 1

2
n |A2,n(T )| > ε

)
= P

(
∆

1
2−2H
n |Wn| > ε

)
≤ cH,T

√
2∆

1
2−2H
n σ̃n√
πε

≤ cH,T
∆

3
2−2H
n

ε
→ 0 for H <

3
4
. (3.16)

From (3.13) and (3.16), it is suffice to consider only the terms
∑[T/k∆n]

l=1 |∆n
l,kBH |2 and

∑[T/∆n]
l=1 |∆n

l BH |2 in
order to prove (ii). First we will show that a sequence of the random vector

(
∆
− 1

2
n I2( fn,k),∆−

1
2

n I2(gn)
)

converges in distribution to a two-dimensional Gaussian random variable with mean 0 and covariance
Σ. By Theorem 1, we need to show that

(i) 2 lim
n→∞
∆−1

n ∥ fn,k∥2H⊗2 = σ
2
11, 2 lim

n→∞
∆−1

n ∥gn∥2H⊗2 = σ
2
22 and 2 lim

n→∞
∆−1

n
⟨

fn,k, gn
⟩
H⊗2 = σ

2
12.

(ii) lim
n→∞
∆−2

n ∥ fn,k ⊗1 fn,k∥2H⊗2 = 0 and lim
n→∞
∆−2

n ∥gn ⊗1 gn∥2H⊗2 = 0. (3.17)

The first limit in (i) can be computed as

2∆−1
n

∥∥∥ fn,k
∥∥∥2
H⊗2 = 2∆−1

n (k∆n)2−4H
[T/k∆n]∑

l,l′=1

⟨
1⊗2

[(l−1)k∆n,lk∆n], 1
⊗2
[(l′−1)k∆n,l′k∆n]

⟩
H⊗2

= 2∆−1
n (k∆n)2

[T/k∆n]∑
l,l′=1

ρH(l − l′)2

= 2k2
∑

| j|<[T/k∆n]

∆n

([
T

k∆n

]
− | j|

)
ρH( j)2.

Hence, since
∑

j∈Z ρH( j)2 < ∞, we obtain, by dominated convergence theorem, that if H < 3/4,

2 lim
n→∞
∆−1

n

∥∥∥ fn,k
∥∥∥2
H⊗2 = 2kT

∑
j∈Z

ρH( j)2. (3.18)

When k = 1, we also have

2 lim
n→∞
∆−1

n ∥gn∥2H⊗2 = 2T
∑
j∈Z

ρH( j)2. (3.19)
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Using a similar argument as for the first term in (i) yields, as n→ ∞,

∆−1
n ⟨ fn,k, gn⟩H⊗2 = k1−2H∆1−4H

n

[T/k∆n]∑
l=1

[T/∆n]∑
l′=1

⟨
1⊗2

[(l−1)k∆n,lk∆n], 1
⊗2
[(l′−1)∆n,l′∆n]

⟩
H⊗2

= k1−2H∆n

[T/k∆n]∑
l=1

[T/k∆n]∑
l′=1

k∑
j=1

(⟨
1[(l−1)k,lk], 1[(l′−1)k+ j−1,(l′−1)k+ j]

⟩
H

)2

= k1−2H∆n

[T/k∆n]∑
l=1

[T/k∆n]∑
l′=1

k∑
j=1

 k∑
r=1

ρH((l − l′)k + r − j)


2

= k1−2H∆n

∑
|l|<[T/k∆n]

k∑
j=1

([
T

k∆n

]
− |l|

)  k∑
r=1

ρH(lk + r − j)


2

→ k−2H
∑
l∈Z

k∑
j=1

 k∑
r=1

ρH(lk + r − j)


2

. (3.20)

As for the first term in (ii), we compute

fn,k ⊗1 fn,k = (k∆n)2−4H
[T/k∆n]∑

l,l′=1

⟨
1[(l−1)k∆n,lk∆n], 1[(l′−1)k∆n,l′k∆n]

⟩
H × 1[(l−1)k∆n,lk∆n]⊗̃1[(l′−1)k∆n,l′k∆n]

= (k∆n)2−2H
[T/k∆n]∑

l,l′=1

ρH(l − l′)1[(l−1)k∆n,lk∆n]⊗̃1[(l′−1)k∆n,l′k∆n]. (3.21)

Let us set ρn,H( j) = |ρn,H( j)|1{| j|≤[T/k∆n]}. By using the arguments in the quadratic variation of the
fractional Brownian motion studied by Nourdin (2013), we obtain, from (3.21),

∆−2
n

∥∥∥ fn,k ⊗1 fn,k
∥∥∥2
H⊗2 = k4∆2

n

[T/k∆n]∑
l,l′, j, j′=1

ρH(l − l′)ρH( j − j′)ρH(l − j)ρH(l′ − j′)

≤ k4∆2
n

[T/k∆n]∑
l, j′=1

∑
j,l′∈Z

ρn,H(l − l′)ρn,H( j − j′)ρn,H(l − j)ρn,H(l′ − j′)

≤ k4∆n

∑
l∈Z

(ρn,H ∗ ρn,H)(l)2 ≤ k4∆n

 ∑
|l|≤[T/k∆n]

|ρH(l)| 43
3

.

Hence we have, from (3.11), that as n→ ∞,

k4∆n

 ∑
|l|≤[T/k∆n]

|ρH(l)| 43
3

≤ c∆n

1 + [
T

k∆n

] 8H−5
3


3

→ 0,

which implies that

lim
n→∞
∆−2

n

∥∥∥ fn,k ⊗1 fn,k
∥∥∥2
H⊗2 = 0. (3.22)
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The same arguments as for the proof of (3.22) yield that

lim
n→∞
∆−2

n ∥gn ⊗1 gn∥2H⊗2 = 0. (3.23)

By combining the above results (3.18), (3.19), (3.20), (3.22) and (3.23), we obtain(
∆
− 1

2
n I2( fn,k),∆−

1
2

n I2(gn)
) L→ N(0,Σ), (3.24)

where the matrix Σ =
(
σ2

11 σ2
12

σ2
12 σ2

22

)
is given by

σ2
11 = 2kT

∑
j∈Z

ρH( j)2, σ2
22 = 2T

∑
j∈Z

ρH( j)2, σ2
12 = k−2H

∑
l∈Z

k∑
j=1

 k∑
r=1

ρH(lk + r − j)


2

.

For i = 1, . . . , d, we write

1
√
∆n

(
U(i)

n − k2H−1
)
=

k2H−1

I2(gn) + ∆2−2H
n [T/∆n]

× I2( fn,k) − I2(gn)
√
∆n

. (3.25)

Obviously, from (3.12) and (3.22), it follows that

k2H−1

I2(gn) + ∆2−2H
n [T/∆n]

p
→ k2H−1

T
. (3.26)

By (3.25) together with (3.24) and (3.26), we have

1
√
∆n

(
U(i)

n − k2H−1
) L→ N (

0,
k4H−2σ2

T 2

)
, (3.27)

where σ2 = σ2
11 + σ

2
22 − 2σ2

12. By applying the delta-method with f (x) = log x to (3.27),∑d
i=1

(
log

(
U(i)

n

)
− (2H − 1) log k

)
√
∆n

L→ N
(
0,

dσ2

T 2

)
. (3.28)

From (3.28), we get

1
√
∆n

(
Ĥols(n, d) − H

)
=

∑d
i=1

(
log

(
U(i)

n

)
− (2H − 1) log k

)
√
∆nd log k2

L→ N
0, σ2

d
(
T log k2)2

 .
Hence the proof of theorem is completed. �
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