417

Journal of the Korean
Statistical Society
Vol. 26, No. 3, 1997

Test for Parameter Changes
in the AR(1) Process'

Soohwa Kim', Sinsup Cho? and Young J. Park®

Abstract

In this paper the parameter change problem in the stationary time
series is considered. We propose a cumulative sum (CUSUM) of squares-
type test statistic for detection of parameter changes in the AR(1)
process. The proposed test statistic is based on the CUSUM of the
squared observations and is shown to converge to a standard Brown-
ian bridge. Simulations are performed to evaluate the performance of

the proposed statistic and a real example is provided to illustrate the
procedure.
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1. INTRODUCTION

Let {z,} follow an AR(1) process
T, =¢:L‘t_1 +ut, t =1,...,T, (11)

where |¢| < 1 and u, is i.i.d. N(0,02). Usually, the parameter ¢ is assumed
to be constant over time.. However, it has been pointed out by many authors
that the assumption is often inadequate.

Nicholls and Quinn (1982) considered the random coefficient AR model.
Tyssedal and Tjgstheim (1988) suggested AR models where the parameters
are piecewise constant and change according to a Markov chain mechanism.
Another approaches can be found in Tjgstheim (1986) and McCulloch and
Tsay (1993). However, all of these are focused on modeling under the as-
sumption that the parameter is unstable. On the other hand, many authors
have considered tests for changes of the AR parameter ¢ and noise variance
o2. Wichern et al. (1976), Davis (1979), and Ryu and Cho (1987) studied the
variance change problem with constant AR parameter. Kwoun (1988), Bai
(1993), and Davis et al. (1995) studied the AR parameter change problem
with constant noise variance.

In this paper we propose a test statistic for parameter changes in the
AR(1) process. Note that under mild conditions, the AR(1) process is weakly
stationary and the variance function is given by Var(z:) = 02/(1—¢?). Since
the variance is a function of the parameters which constitute the process
changes in the parameter result in variance changes. Therefore, to detect pa-
rameter changes, one can also use the test procedure based upon the CUSUM
of squares by Inclan and Tiao (1994) which was used to detect changes in the
variance.

In Section 2, we propose a test statistic and the detection procedure for
parameter changes in the AR(1) process. Simulation results are reported by
comparing the performance of the proposed test with the other test in Section
3. Finally, we apply the proposed test statistic to a real example.

2. CUSUM OF SQUARES-TYPE TEST STATISTIC

It is shown that the AR(1) process is a mixingale in the sense of McLeish
(1975) in the following lemma.
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Lemma 1. Assume that {z,} follows the AR(1) process in (1.1) with o2
E(z}) = 02/(1 ~ ¢%). Define F* = o(u;_q,u,_s, .. .)- Then {(z? — 02, F*)} is
a mixingale of order —1/2.

Proof. By recursion, we obtain

m—1

zy = ¢mzt—-m + Z ¢]ut—j,
=0

J

m-—1 m-1
z? = ¢2"'a:t2_m +2¢™x;_ Z du ;i + (Z ¢’u,_,~)2.
=0 =0
Thus,
m-—1
IE(zf = oD)IF* ™lls = [l¢™al,, +02 Y 6% — o2
i=0

= |l¢*z} . — ™ 02/(1 - 6?2
< *™llzi Nl + 02/ (1 — ¢2))
def

= ¢mct-

The last equation is obtained from the definition of a mixingale in MeLeish
(1975) when there exists a positive sequence {¥m} such that ¢,, — 0 as
m — oo and a nonnegative sequence {c,} for ¢ > 0 and k > 0.

Lemma 2. Under the same conditions as in Lemma 1,
E{(Sk+r — Sk)*|F*"}/T — o?
in L, norm as min(m, k,T) — oo, where o2 = EE+2Y | Bty = 2041+
%)/ (1 - ¢%)°.
Proof. Define A = E[(Syyr ~ Si)?|F*~™]/T, then

1 Z m
A = =) Bzl — od)F"]
t=1
ET_I ! E 2 2 2 2 ]:k—m
+T Z Z [(xt+k a.:t)(xs+k Uz)l ]
t=1 s=t+1
A+ A,

By recursion, we obtain

t-m-—1

_ t4+m j
Tork = 8" Tim + Y Fupry,

j=0
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E@,IF5™) = ¢ 0Bl F ) + (1 - ¢ )el/(1 - ¢%),
E(x3+k$t2+kl}-k_m) = ¢2(’_t)E(z§+k|fk—m)a
+(1 - ¢*"NG2E (=], |FF ™)/ (1 - ¢7),
E(@2 |F* ™) = ¢*™al |+ (1 - ¢*m)el/(1-¢%),
E(zh JF™) = ¢i+mzl 464%™zl o2(1 - ¢7 ™) /(1 - ¢%)
+303(1 - ¢***™) /(1 - ¢%)
+6¢%04 (1 — ¢2tt™)(1 — g2+ D)/ ((1 - ¢*)(1 - ¢%)),

E(zf+kxf+k|f"‘"'") - af[E($3+k|~7'-k_m) + E(-"’?+k|-7'-k_m)] + U:
= g2 (gh, | F ™) — 26202 E (a2, |FF ™) /(1 — ¢%) + 670700l /(1 - ¢%).

From the above equations, we know that

1 & —m -m
A = -fl_‘z;[E(xA:H'-Fk ) — ZU:E(‘”fﬂlfk )+ 0':] £y 203/(1 - ¢2)27
t=
2 T-1 4
By = 23 ¢ [BlbalF ) - 2EGhF /(- ¢)

t=1

T
+od/(1-¢M)?] D o*

s=t+1
2 T-1
= 7 S [E(at | F*™) = 202E (2l | Fm)/ (1= ¢%) + 00/ (1 = ¢°)°]
t=1

x¢*(1 - ¢*T~9)/(1 - ¢?)
L4 40t67/((1 - D)1

Therefore, we obtain

%E (Siar = SPIF*™] 5 204(1 4+ 67)/(1 - $1)° = %,

Theorem 1. Define

Zf—le k
Di==—-—=, k=1,...,T.
tT=1f'33 T

Then, under the same conditions as in Lemma 1,

_ D
Br = OVT gD = g B
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where B(z) is the standard Brownian bridge and

2 (1—¢?)
C?= 2T (2.1)

Proof. Define the partial sum of ¢ as S, = YF ¢, where ¢, = z? — o2,
From the following equations

E& = 203/(1 - ¢%)?,
E&é = ¢%202/(1 - ¢%)?,

we get
[o o]
> |B&oék| =203/(1 - ¢°)* < 0o, since |4] < 1.
k=1

Therefore,
%E(ST 22 g

By Lemma 1, {(¢;, F*)} is a mixingale of order —1/2. Since ¢, is a strictly
stationary process with constant finite second moment, €2 is uniformly in-
tegrable. By Lemma 2, E{(Si+r — Si)%|F*™}/T — o¢? in L, norm as
min(m, k, T) — oo. Therefore, by Theorem 2.6 of McLeish(1975)

Xr(z) = ﬁs[n] = ngt 2, W (2),
i

=1

where W (z) is a standard Brownian motion. Moreover,

VI SahPe = 3l =) - e S et - o)

= o(Xr(z) — 2X7(1)).

By the law of large numbers, Y7 22/T -2 62 as T — oco. If we let

Ci = 02/o we obtain C;VTD, 2= B(z) as T — oo.

We can obtain the information about the number and the locations of the
change points by using the statistic D,. Define

DT, & —1-2T:a:2 D =lix2—£—1—ix2 (2.2)
* Tt:l ‘ * Tt=l t TTt:l v .

421
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where k = [Tz}, fork=1,...,Tand0<z<1. For example, assume that
there is one change point k* = [T'2*] in the series. Then,

DT 14\5:2 kliz
= = T, — == z;,
¢ Tt=l t TTt:lt

Py oam—z(zn+ (1 —-2)m)) =2(1-2")4, for k<K
Py rn4 G- —z2(n+(1-2)n)=(1-2)"A, for k>Fk,

where A =7 — 1 , 7; = 02,/(1 — ¢?), and ¢; and o2, are AR parameters and
noise variances, respectively, for i = 1, 2. Therefore, DT; is maximized at the
change point k*.

It is straight forward to show that the above results are still applicable to
the MA(q) processes following Billingsley(1968).

3. SIMULATION

We compare the performances of two detection procedures, CUSUM based
on DT, in (2.2) and CUSUM-B suggested by Bai (1993), when a change
occurs in the parameter of an AR(1) model. For simplicity, it is assumed
that the change occurrs once in the middle of the series. For the values of
é1, (—.5,—.3,—.1,.1,.3,.5) are considered and ¢, is chosen near ¢;. A large
change is not considered since it may result in the model misspecification.
Simulation results are summarized in Table 1. It is observed that CUSUM
outperforms CUSUM-B in all the cases considered.

Ty — ¢'1.Tt_1+ut, t=1,,T/2
= ¢29:L_1+u¢, t:T/2+1,,T

where |¢;| < 1 for i = 1,2 and u, follows an i.i.d. N(0, 1).

4. REAL EXAMPLE

We apply the CUSUM procedure to the IBM closing stock prices, Series B
in Box and Jenkins(1976). Many authors have used this example to evaluate
the performance of their proposed statistics and algorithms. First, Box and
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Table 1. Power comparison of CUSUM and CUSUM-B procedures

¢ is changed from .1 to
procedure -1 .1 (null) .5 7 9 sample size
CUSUM |.0303 .0279 .0310 .0663 .1983 .3741
CUSUM-B | .0635 .0471 .0338 .0215 .0129 .0036 T=100
CUSUM |[.0391 .0358 .0463 .1534 .5649 .9747
CUSUM-B | .0623 .0462 .0338 .0241 .0187 .0075 T=200
CUSUM |.0443 .0418 0774 .3983 .9556 1.000
CUSUM-B | .0673 .0499 .0371 .0263 .0240 .0312 T=500
¢ is changed from .3 to
procedure | -.1 1 .3 (null) 5 7 .9 | sample size
CUSUM | .0379 .0300 .0243 0378 .1091 .2085
CUSUM-B | .0857 .0652 .0455 0276 .0145 .0029 T=100
CUSUM | .0561 .0461 0318 0720 .3587 .9108
CUSUM-B | .0883 .0656 .0446 .0294 .0173 .0053 T=200
CUSUM | .0860 .0733 .0410 1789  .8351 .9998
CUSUM-B | .0941 .0700 .0496 0330 .0215 .0197 T=500
¢ is changed from .5 to
procedure | -.1 1 3 .5 (null) 7 .9 | sample size
CUSUM |.0854 .0629 .0356 .0191 .0388 .0783
CUSUM-B | .1274 .0965 .0688 .0424  .0204 .0038 T=100
CUSUM | .1865 .1483 .0730 .0261 .1189 .6002
CUSUM-B | .1338 .0989 .0706 .0447 .0213 .0047 T=200
CUSUM | 4455 .3852 .1725 .0357 .3877 .9966
CUSUM-B | .1431 .1086 .0770 .0486 .0251 .01321 T=500
¢ is changed from -.1 to
procedure -.9 -7 -5 -3 -1 (null) .1 |sample size
CUSUM | .3679 .1992 .0624 .0310 .0275 .0292
CUSUM-B | .1341 .0992 .0771 .0606 .0483 0370 T=100
CUSUM | .9776 .5679 .1513 .0478 .0371 .0388
CUSUM-B | .1360 .1018 .0776 .0618 .0471 .0367 T=200
CUSUM |1.0000 .9560 .3961 .0729 .0408 .0447
CUSUM-B | .1438 .1071 .0821 .0644 .0495 .0402 T=500

(Based upon 10000 replications)
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Table 1. (continued)

¢ is changed from -3 to
procedure | -.9 -7 -5 -3 (null) -1 .1 | sample size
CUSUM | .2037 .1055 .0329 0257 .0330 .0403
CUSUM-B | .0997 .0758 .0583 .0486 0397 .0323 T=100

CUSUM | .9111 .3631 .0741 0331 .0461 .0542
CUSUM-B | .1023 .0753 .0600 .0469 0393 .0315 T=200
CUSUM |.9999 .8404 .1764 0381 .0709 .0862
CUSUM-B | .1076 .0800 .0632 0503 0411 .0335 T=500

¢ is changed from -5 to
procedure | -.9 -7 -5 (null) -3 -1 .1 | sample size
CUSUM | .0742 .0375 .0201 0397 .0692 .0926
CUSUM-B | .0752 .0584 .0487 0418 .0359 .0317 T=100
CUSUM | .6047 .1140 .0260 .0722 .1503 .1899
CUSUM-B | .0764 .0600 .0475 .0409 .0347 .0313 T=200
CUSUM | .9962 .3807 .0355 1726 .3924 4457
CUSUM-B | .0795 .0629 0497 .0424 .0368 .0335 T=500

(Based upon 10000 replications)

Jenkins (1976) fitted the ARIMA(0,1,1) model to this series and concluded
that there is a change in the MA parameter which results in the inadequacy
of the model. Wichern et al. (1976) applied their algorithm to the first
difference of the series assuming that the series follows an AR(1) model and
concluded that there are two innovation variance changes at t = 180 and
¢ — 235. Their results are summarized in Table 4 of Whichern et al. (1976).
They also claimed that there is some evidence that the AR parameter ¢ differ
significantly from one another. Baufays and Rasson (1985) also argued that
two variance changes occurred at t = 235 and t = 279. Tsay (1988) concluded
that only one variance change occurred at ¢t = 237. Incldn and Tiao (1994)
used cumulative sums approach and found two variance changes at ¢ = 235
and t = 279. They, however, analyzed the series under the assumption that
the series follows a white noise process, i.e., i.id. N (0,02). Since the full
series (sample size=369) follows a white noise process our test procedure is
the same as the Inclan and Tiao (1994)’s and one variance change point at
t = 235 is detected.
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Table 2. Results of fitting an AR(1) model

periods &; s.e  t-value
full series(t= 1,...,369) 025 .0522 .48
first sub-series (t=1,...,234) 213 .0640 3.33
second sub-series (t=235,...,369) | -.022 .0871 -.25

Hence, we partition the series into two sub-series : one from ¢ — 1 to
t = 234 and another from t = 235 to t = 369. From Table 2 we see that
the first sub-series follows an AR(1) model but Inclin and Tiao (1994) ignore
this point and apply their algorithm to this series as if it were a white noise
process. When we apply the CUSUM procedure, we find no further variance
change in the first sub-series since the value of the test statistic Br; = .9998 is
less than 1.36 (the 95th percentile of the standard Brownian bridege), where
Figure 1 apparently shows that there is no dominant peak pattern in DT,.

But, the second sub-series, which is assumed to follow a white noise pro-
cess, has one variance change at t = 279 since

Bry = 2.578488 > 1.36.

Figure 2 shows this more clearly. When we apply the detection procedure
to the subseries, one from ¢ = 235 to ¢ = 278 and another from ¢ — 279 to
t = 369, no further change point is detected. In summary, we conclude that
the IBM data has two change points at ¢t = 235 and ¢t = 279.

o

.08
.07
°.o8
0.08
0.04

N W/\/\

-..0

Figure 1. Plots of DT} of the IBM data : First sub-period
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Figure 2. Plots of DT} of the IBM data : Second sub-period
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