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Bayesian Parameter Estimation and Variable
Selection in Random Effects Generalised Linear
Models for Count Datal

Man-Suk Oh! and Tae Sung Park?

ABSTRACT

Random effects generalised linear models are useful for analysing clus-
tered count data in which responses are usually correlated. We propose a
Bayesian approach to parameter estimation and variable selection in random
effects generalised linear models for count data. A simple Gibbs sampling
algorithm for parameter estimation is presented and a simple and efficient
variable selection is done by using the Gibbs outputs. An illustrative exam-
ple is provided.

Keywords: Correlated data, Markov chain Monte Carlo, density estimation,
Bayes factor, repeated measurements.

1. Introduction

Generalised linear models (GLM) have been widely used to analyse data with
continuous and discrete response variables, as described in McCullagh and Nelder
(1989). The underlying assumption for the generalised linear models is that
the responses are independent with distributions from the exponential family.
In many applications, however, responses may be obtained in clusters and may
not be independent. In longitudinal studies, for example, responses repeatedly
observed from the same subject are correlated. In sampling surveys, responses
from the members of the same family are likely to be correlated.

One way to incorporate the correlation among responses is to introduce cor-
relation parameters in addition to the mean parameters. Liang and Zeger (1986)

tThis paper was accomplished with Research Fund provided by Korean Research Foundation,
Support for Faculty Research Abroad.

!Department of Statistics, Ewha Womans University, Seoul 120-750, Korea (e-mail :
msoh@mm.ewha.ac.kr)

2Department of Statistics, Seoul National University, Seoul 151-747, Korea



94 Man-Suk Oh and Tae Sung Park

proposed an approach based on the generalised estimating equations which are
derived without full specification of the joint distribution of observations from a
subject. Only the likelihood for the marginal distributions and a working corre-
lation matrix for the vector of repeated measurements from each subject need to
be specified. Their approach is closely related to quasi-likelihood methods.

An alternative way to incorporate the correlation is to add random effects
to fixed covariate terms in the mean structure in GLM, resulting in the random
effects GLM or generalised linear mixed models. Especially, a log-linear model
with random effects have been proposed for correlated count data (Breslow, 1984;
Tsutakawa, 1988).

In this paper, we consider a Bayesian analysis of the random effects GLM for
count data. Bayesian approach is flexible in the sense that it can use important
prior knowledges and the classical maximum likelihood estimates can be obtained
from the posterior modes when constant priors are used. However, Bayesian
analysis of random effects GLM for count data has not been widely used mainly
because of computational difficulties.

Recently Markov chain Monte Carlo (MCMC) methods have drawn great
attention as a tool for solving computational problems in various statistical ap-
plications. In particular, the Gibbs sampling algorithm described by Gelfand
and Smith (1990) has been widely used since it is very easy to implement if the
full conditional distributions of components of the parameter are given in conve-
nient forms for random generation. Moreover, several authors recently developed
methods which utilize outputs from the Gibbs sampler to estimate posterior den-
sity functions (Chib, 1997; Oh, 1999) which can be used for simple and efficient
variable selection, as will be shown in Section 5.

In the random effects GLM for count data, however, implementation of the
Gibbs sampling algorithm is not straightforward since the posterior distributions
of parameters are not given in convenient forms by lack of conjugacy among
the distributions of count data, the random effects, and the prior (see Section
2). To overcome the difficulty and hence utilize the advantages of the Gibbs
sampler for posterior inference and variable selection, we propose to introduce
some auxiliary variables into the model so that they can lead to convenient full
conditional density function of each component of parameters, which is essential
for easy implementation of the Gibbs sampler. Previous works on using auxiliary
variables to relieve the complexity in full conditional distributions in the Gibbs
sampler are Albert and Chib (1993) and Oh (1998), among others.

Relavant MCMC methods for random effects GLM for count data are Zeger
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and Karim (1991) and Chib et al. (1898). Zeger and Karim (1991) suggested a
Gibbs sampling algorithm in which a rejection sampling is used for generating
components of parameters. Their method is very general in that it can be applied
to any type of data. However, the rejection sampling with a normal sample
generating density may be very inefficient when the normal approximation is not
good. Recently Chib et al. (1998) suggested a Metropolis-Hastings algorithm for
random effects generalised linear models for count data. One may estimate post
density functions from the Metropolis-Hastings outputs (Chen, 1995). However,
it requires some correction factors (importance weights) which may have a large
variation and cause inefficiency in estimating the posterior densities.

The paper is organized as follows. Section 2 describes the random effects
generalised linear models. Section 3 introduces the auxiliary variables. The full
conditional posterior distributions of components of parameters are derived in
Section 4. A simple and efficient variable selection scheme utilizing the Gibbs
outputs is introduced in Section 5. An illustrative example is given in Section 6
and some concluding remarks are given in Section 7.

2. Random Effects Generalized Linear Models

Let y;; be a count response data and z;; be the vector of p predictors, for the
jth subject in cluster ¢, j = 1,...,n;, 4 = 1,..,n. Here, the observations y;1, ..., ¥i n;
in cluster ¢ are likely to be correlated.

A random effects GLM is defined as follows. Given the p-dimensional fixed
effect # and the g-dimensional random effect b;, the response y;; follows an ex-
ponential distribution

F(vij10:5) = exp[(vi;0i5 — a(0i5) + Q(ys5))/ bl

We consider the case where the scale parameter ¢ is 1 and the link function is
the canonical link function. Then a random effects GLM is given by

85 = mij = 9(B,bi) = zi; B + z{;bi,

where z;; is a g-dimensional covariate vector. In addition, the density function
of y;; can be written as

f(yi518,b;) = explyi; - 9(8,b;) + S(B, ;) + Q(vi5)]-

Since we are interested in count data, we mainly focus on the Poisson response
or binary response in which it is reasonable to assume that the scale parameter ¢
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is 1. In addition, the canonical link functions are most commonly used for these
responses.

The random effects b;’s are assumed to be independent and identically dis-
tributed a certain parametric distribution. The most common choice for the dis-
tribution of b; is a multivariate normal distribution with mean 7 and covariance
matrix D, i.e., N(n, D). We used a nonzero mean for b; to avoid nonidentifiability
in MCMC, as suggested in Chib et al. (1998).

In the above random effects GLM, the parameters of interest are (3,7, D)
and the likelihood function of (3,7, D) given data {z;;,y:;} is given by

1(8,n, Dldata) o [ | / 11 £ @18, ) - IDI7/? exp[—%(bi —n)' D™ (b — )] db.
=1 j=1

(2.1)
Combining the likelihood and a prior n(8,7, D), one obtains a posterior density

function l(ﬁ DId . ) (,3 D)
_ T ata)m o, 1,
n(8,m, Dldata) = o= D ldata)r(8,n, D)dpdndD’ 22

and any posterior inference is based on the posterior density.

For count data, obviously the posterior density is not given in a closed form
and a numerical approximation is required. We propose to use the Gibbs sampling
algorithm for posterior inference due to its advantages mentioned in Section 1.

3. Auxiliary Variables

The Gibbs sampler iteratively generates samples from full conditional distri-
butions of components of parameters. Thus, easy random generation from the
full conditional posterior distributions is essential for the Gibbs sampler. For
count data, however, due to the non-conjugacy among the conditional density
f(yij1B, b:), the mixing density f(b;|n, D) of b;, and the prior 7(83,7, D), the full
conditional posterior distributions of components of the parameters are very com-
plicated and direct implementation of the Gibbs sampler is prohibited. Especially,
the nonconjugacy between f(y;;|3,b;) and f(biln, D) makes even the likelihood
[(8,n, D|data) analytically intractable. To avoid this nonconjugacy problem, we
introduce normal auxiliary variables into the model, extending the ideas of Albert
and Chib (1993) and Oh (1997), for random effects GLM. With these extra auxil-
iary variables, the full conditional distributions of components of the parameters
are given in standard forms, so that the Gibbs algorithm can be easily applied.



Bayesian analysis of GLMM count data 97

Given (B, b;), let W;; be a random variable following N (z;8 + z;;b;,1) dis-
tribution. Define

Yij = yij if @7 [F(ys; — 18,0:)] < Wij — 2,8 — 2};b0 < 7 [F (3518, b3)],

where @ is the standard normal cdf and F' is the cdf of Yj; which depends on
(B,b:i). Then the joint density function of (Y;;, Wi;) given (8, b;) is

f(yij, wiz| B, b;)
= ¢(wz]|$;y3 + le'jbia 1)
xI(@7HF (yij — 118, b:)] < Wij — 238 — 2j;bi < @7 [F(y3;18, b)),

where ¢(-|u, 0?) is the density function of N(i,0?) and [ is the indicator function.
It can be easily shown that the marginal density function of ¥;; derived from the
joint density f(yi;, wi;|B, b;) correctly gives the density f(yi;|5,b;) corresponding
to the cdf F(yijlﬁ, bl)

With the extra auxiliary variables #;; in the model, we may consider § =

(/67 TI,D, {bz}a

{Wi;}) as new unknown parameters in the model. Now, the posterior density
function of 6 is given as

m(6|data) o H{H £ (i, wij|B, b;) - |D| 12 eXP[_%(bi —n)'D™ (b — )]}
=1 j=1

x7(B,n, D)
o expl=3{30 Y (i = 5P — ) + 36— ) D7 b= )]
i ;
x|D|™2 7(B,m, D) || T I(Ai(8,biwij)),
U
where
Aij(ﬂvbhwij)
= {(B,bi,wi;); T F(ys; — 1|B,b;) < wij — z;8 — 21;00 < 7 F (3516, b:) }-

In the next section, we derive full conditional distributions of W5, b;, 8, n and
D.
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4. Full Conditional Posterior Distributions

Suppose that 7(3,n, D) = n(8)m(n)x(D), where n(8) and n(n) are densities
of N{(Bo, L) and N(ng, ¥y), respectively, and «(D) is the density of IW (m, E),
the inverted Wishart distribution with parameters m and E (Press, 1988). Then
the posterior density becomes

1 -
m(0ldata) oc expl~5{Y D (wij ~ B — z;bi)* + Y (b =)' D7 (b — )
i g i

+(B — Bo)' =51 (B = Bo) + (1 — m0)' U5 (n — mo) + tr(DT'E)}]
x|D|~rtmtat D2 TTTT 1(45(8,bi,wi)), (4.1)

L

where tr denotes the trace of a matrix. From this posterior kernel, it can be easily
seen that the full conditional density of n and D are given as a normal and an
inverted Wishart density, respectively. In addition, if we ignore the restriction in
the indicator function, then the logarithm of the posterior is a quadratic function
of w;j, b;, B. Hence, the full conditional posterior distributions of w;j, b;, B are all
restricted normal distributions. Now we describe each full conditional posterior
distribution in detail.

Let X; = (zi1, .., Tip;)» Zi = (21, -, 2in;) and Wi = (wip, ..., Wig;)'. We also
let A;;(B]b;, wij) denote the subregion of 8 such that, for given (b;, ws;), (8, bi, w:;)
is in A;;(B, bi, w;;). In the same manner, we denote the subregion of b; and W;;
in A;;(f, bi,ws;), given others, by A;;(b;|8, wi;) and A;;(Wi;|8,b:), respectively.
In what follows, we will suppress the data in the posterior distribution and let
[Blothers), [bi|others), [Wijlothers], [n|others], [D|others), denote respectively
the full conditional posterior distributions of 3, b;, W;j, n and D, given all the
other unknown variables and data.

From the posterior kernel (4.1), the following full conditional posterior distri-

butions are obtained:

[bsothers] ~ N (us,, Zy,) 1(N7L; Aij (0|8, wij)),
[Wijlothers] ~ N(z};8 + 2/;bi, 1) 1(Aij(Wi;|8,6:)),
[nlothers] ~ N(uy, Zy),
n
[D|others] ~ IW (n+m, E + Z(bi - n)(b; —n)’), (4.2)

i=1
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where

pe = SO XIWi—Zib)+Z560),  Bp = O_XiXi+ThHh
Py, = 2b,~(Zl{(Wi—Xiﬂ)+D_l77), Ty = (ZZ{Zi-FD_I)_l,
py = Tp(D7VY b+ glm), Sy, = (@D l4+ush!

(4.3)
and N denotes the intersection of intervals.
There is no restriction in the full conditional posterior distribution of # and
D, hence generation of samples of  and D is straightforward. One may use the
algorithm of Odell and Feiveson (1966) for sample generation from a Wishart
distribution. In addition, since A;;(W;;|8,b;) can be expressed as

Aii(WilB,b:) = {Wij ;@7 Flyij — 1|8, b:) + ;8 + ;b
< Wij < &7 F(y3518,bi) + 3B + 2;bi},

the full conditional posterior distribution of W;; is a univariate normal distri-
bution restricted to a fixed interval, from which sample generation can be done
very easily by using the cdf inverse method (Devroye, 1986), the mixed rejec-
tion algorithm (Geweke, 1991), or a simple accept-rejection method (Rubinstein,
1988).

On the other hand, the full conditional posterior distributions of § and b;
are restricted multivariate normals with highly complicated forms of restrictions
and hence generation of samples of 8 and b; is not easy. The Hit-Miss algorithm
described in Rubinstein (1988) may be used, which keeps generating candidate
samples from the unrestricted normal distribution until one obtains a sample
belonging to the region. However, it is well known that the Hit-Miss algorithm
can be very inefficient when the restricted region has a very small probability,
which is often the case in a high dimensional space. Thus, the Hit-Miss algorithm
would be inappropriate for the sample generation of 8 and b;.

Because the Gibbs sampler iteratively generates samples from the full con-
ditional distributions, a simple and efficient method of generating samples from
the full conditional distributions of 5 and b; is desirable. For this, we consider
a simple and accurate approximation to the restriction in the full conditional
distributions of 8 and b;.

The complexity of the restricted regions of 8 and b; arises mainly from
&1 F(y;;18,b;), for which a simple closed expression is not known for count data
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y;j. However, for some distributions for count data such as Poisson and Binomial,
the cdf F can be very accurately approximated by the standard normal cdf, with
appropriate transformations. With this approximation, the complicated ®~1F
can be greatly simplified, resulting in a simple approximation to the restrictior.
We illustrate this for the Poisson data case in the rest of this section. Other
distributions can be handled in a similar way.

When y follows a Poisson distribution with mean A, as shown in Johnson and
Kotz (1972, Ch.4) and Oh and Lim (2001), the cdf F(y|)) of y is almost identical

to
Fr(y])) = 2[-3vy +1 [(y%)l/ e 1+‘1>J]'

Thus, we may replace F by F* and hence <I"1F(y[)\) by

1
IR YD) = -3 y+1 [ —1+—}.

+1)1/3 9(y + 1)
Therefore, the restriction A;(8, b;, w;;) can be replaced by

A5 (B, bi, wij)
= {(B,bi,wij); alys; — 1,238 + zi;bi, wij) <0 < a(ysj, z;8 + 2{;bi,wi5) },
(4.4)
where

+ :b;
a(yij, 58 + 2{;bi, wi5) = 7 F* (yy lez“ﬂﬂ ') —wij + a8+ 2bi. (4.5)
Now it remains to solve the inequalities
a(yij — 1, 6ij, wiz) < 0 < a(yuj, dij, wij), (4.6)

for 6;; given y;; and wj;, where d;; = z;;8 + 2j;b;. Using the fact that a is
increasing in y;; and concave in §;; and that there exist two distinct solutions cf
d;; for a(yij, 65, wi;) = 0, it can be shown that (4.6) is equivalent to {c;(w4;) <
5ij < Cz(wij)} or

{e1(wig) < 65 < di(wij)} U {da(wij) < 8y < calwij)},

where c;(w;;) and ca(w;y;) are two distinct solutions of a(y;;,d, wi;) = 0, d(w;;)
and dp(w;;) are two distinct solutions of a(y;; — 1,6, w;;) = 0, and U denotes
the union of intervals (Oh and Lim, 2001). Thus, given wj;, the region of §;; =
x;jﬁ + 2} ;bi satisfying the restriction A is given as a fixed interval, hence, given
w;;j and all the other parameters, the reglon of each element of 8 and b; is given
as a fixed interval. From (4.2) with A;; replaced by Aj;, the full conditional
distributions of elements of 5 and b; are given as restricted normal distributions.
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5. Variable Selection

Let My : 8 # 0 and M; : B(;) = 0 where f;) is the i-th subset of B among all
possible 2P — 1 subsets.
Bayesian variable selection is based on the posterior probability

[ p(datalB_qy, Mi)m(B_ ()| Mi)dB_(;yp(M;)
2ot [ pldatal By, Mi)m(B_ ()| My)dB_5yp(M;)
where B_ ;) is the set of elements of 3 other then f;, p(M;) is the prior probability
of model M;, and m(B_(;)|M;) is the prior density of B_(;y under M;. Suppose
that m(B_qy)|M;) = w(B_;)|Bu = 0, Mo) and p(M;) are all equal,

w(M;ldata) =
(M;|data) >

7 (M;|data)

m(Mo|data) /p(data}ﬁ—(i) ; Mi)ﬂ'(ﬂ_(i) |Mi)d,3_(i)

p(data|B_gy, Buy = 0, Mo)m(B_(5)|By = 0, Mo)dB_;)

pldatalB_, By = 0, Mo)m(B-iy, By = 0, Mo)
m(B(i) = 0|Mo)
7(B) = O|data, My)
(B = 0|Mo)
B;,

dB_)

]
— —

(I

where 7(8;) = Oldata, My) is the posterior density of B(; at 0 under M.
Thus, the posterior model probabilities are given as
2p--1
P(Moldata) = (1+ > Bi)7Y,

=1

P(M;|data) = B;-P(My|data), i =1,..,2°P — L.

Once the posterior model probabilities are obtained, one may choose the model
with the highest posterior probability or perform model averaging, i.e., combine
information on § from models with significant posterior probabilities. (Kass and
Raftery, 1995; Hoeting et al., 1999)

Now, the variable selection problem becomes the problem of estimating marginal
posterior density functions of all possible subsets of 8. Estimating each marginal
density function from a different MCMC algorithm, as suggested in Chib (1995)
and Chen (1994), is not practical here since 2P increases very rapidly as p.

Oh (1999) suggested a method which can simultaneously estimate all marginal
posterior density functions by using only one set of posterior samples. Especially
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when all the full conditional posterior density functions of components of parame-
ters are given, the method can be applied withcut any tailoring, and all marginal
density functions can be estimated simutaneously during the simulation. For
instance, from Oh (1999),

(1 = B2 = 0|data, M)
= Eln(B2 =0[61 = 0,53, .., Bp, {wij }, {bi}, data, Mp)
x w(B1 = 0|B2, .., Bp, {wij}, {b:}, data, My)),
(81 = B2 = B3 = 0]data, My)
= En(f3 =0|p1 = P2 =0, B4, .., Bp, {wi; }, {b:}, data, My)
x m(Bz = 0|1 = 0, B3, .., Bp, {wis }, {bi}, data, Mp)
x m(f1 = 0|82, .., Bp, {wij}, {b:}, data, My)),

where the expectations are taken with respect to the joint posterior distribution
of 8, {wi;} and {b;}.

As shown in Section 4, the full conditional density function of each element
of B and b; is given as a univariate restricted normal density, hence estimation
of the posterior density functions is strightforward. Note also that it does not
require any additional sampling since all the marginal densities are expressed
as expectations with respect to the same joint posterior distribution, which is a
great advantage of the method for the purpose of variable selection.

6. An Illustrative Example

We applied the proposed algorithm to the hospital visit data given by Karim
and Zeger (1989). The numbers of hospital visits made by a group of 73 children
were observed during four different time periods. The sex of each child, smoking
status of the child’s mother during pregnancy, and the child’s age in months were
recorded. We assumed a Poisson distribution with mean A;; = exp[mgjﬂ + 2;;b;]
for the response, the number of hospital visits, and assumed b; ~ N(n, D). For
the covariates z;;, we included the indicators of second, third, fourth visit, sex
and smoke, and logarithm of the age divided by 12. We let z;; = 1 for all 7, j and
so b; is univariate. We did not include the intercept term in z;; but allow nonzero
mean for b; instead since Chib et al. (1998) pointed out that common terms in
z;; and z;; can cause a nonidentifiability problem in Markov chain Monte Carlo
methods.

For prior distributions for the parameters 3,  and D, we assumed 7 (5,7, D) =
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TABLE 6.1 Posterior means and standard deviations of parameters

Estimate SD Estimate SD
B | —0.43558 | 0.15726 || Bs 0.32496 | 0.25436
B2 | —0.30621 | 0.15098 || Bs 0.12603 | 0.18293
fBs | —1.01192 | 0.18768 || n { —0.27552 | 0.31730
Bs | —0.10977 | 0.24338 || D 0.91887 | 0.47456

m(B)m(n)w(D) and chose the following vague priors for 8,7, D :
B~ N(B,30I), n~N(0,1), D~IG(55),

where B is the MLE of 8 obtained from the generalised linear model without
random effect, I is the identity matrix, and IG(a, b) represents the inverse Gamma
distribution which corresponds to one dimensional inverted Wishart distribution
with parameters 2a and 4b.

As starting values in the Gibbs sampling algorithm, we used 8 = B, b; =0,
n=0,D =1 and w;; = 1. We applied the proposed Gibbs sampling algorithm
by using the full conditional posteriors given in Section 4 and ran 300,000 iter-
ations after 50,000 iterations for burn-in. Time sequence plots of the unknown
parameters, given in Figure 6.1, suggest that the convergence has been achieved.

Table 6.1 presents posterior estimates of 3, '77 and D from the Gibbs sampler.
It can be observed that the last three elements of 8 are not significant in the
sense that their 95% credible intervals contain 0.

We estimated the marginal posterior density functions at zeros for all pos-
sible subsets of 8 and then computed the posterior probabilities of the models.
Models with posterior probability greater than 0.05 are presented in Table 6.2
in descending order of their posterior probabilities. It can be observed that the
model with only £, and B3, i.e., with B2 = B4 = B5 = s = 0 has the highest
posterior probability and hence this model can be selected as the best model.
However, the highest probability is only 0.3113 and the other five models listed
in Table 6.2 have probability of roughly 0.1. Thus, it might be reasonable to
consider model averaging for inferential purposes.

7. Concluding Remarks

In this paper, we have developed a Gibbs sampling algorithm for parame-
ter estimation and variable selection in random effects generalised linear models
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TABLE 6.2 Models with significant posterior probabilities

Model | Posterior Probability Model Posterior Probability
(B1,83) 0.3113 (B1, B2, B3) 0.1042
(83, Bs) 0.1203 (B1, B3, B1) 0.0830
(83, Be) 0.1196 (B1,Bs,Bs) 0.0759

for count data. The key feature of the method is that it introduces some nor-
mal auxiliary variables into the model, so that all the full conditional posterior
distributions of the fixed and the random coefficients in the model are given as
restricted normal distributions. The complicated restrictions in the normal dis-
tributions due to the non-conjugacy among the distributions of the count data,
the random effect, and the prior are simplified by using simple and accurate
approximations to the restrictions.

Obviously, the algorithm can also be used for the generalised linear model
without random effects. When there is no random effects in the model, one only
need to skip generating b;, 7 and D in the algorithm.

When count data follow Poisson or Binomial distribution, the cdf can be very
accurately approximated by the standard normal cdf with appropriate transfor-
mations. In other cases, one may use a piecewise linear combinations of the
standard normal cdf as in Oh (1997).
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