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ABSTRACT

We present formula for detecting influential observations on the
smoothing parameter in smoothing spline. Further, we express them
as functions of basic building blocks such as residuals and leverage, and
compare it with the local influence approach by Thomas(1991). An
example based on a real data set is given.
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1. INTRODUCTION

One of the important issues in smoothing spline diagnostics is finding influ-
ential observations on the smoothing parameter, however, quite a few attention
was pald to the nonparametric regression diagnostics. Since the estimator of
the smoothing parameter is quite sensitive to outliers it is important to detect
influential observations. Eubank (1985) and Silverman (1985) studied basic
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building blocks such as residuals and leverage in smoothing spline. Hastie
and Tibshirani (1990) defined a version of Cook’s distance for a single case
in the generalized additive model. Thomas (1991) derived local influence of
observations on the cross-validated smoothing parameter in smoothing spline.

Consider a nonparametric regression model
yj=;z(tj)+€j, )=1...,mn, (1.1)

where g belongs to the m-th order Sobolev space Wi*|a,b] of functions f
(a <t < <ta < b) and the errors ¢; are uncorrelated, with mean zero
and variance o2. One of many possible estimators of x 1n (1.1) (see Eubank
(1988)) is the minimizer over f € W of

LS -y A [ @@, a0 (1.2

If n > m, the minimizer f, is a natural polynomial spline of order 2m with
knots at the t; that is known as a smoothing spline. Discussions of smoothing
splines and their statistical applications may be found in Wegman and Wright
(1983), Silverman (1985), Eubank (1988), and Wahba (1990). The parameter
) is called a smoothing parameter, and the choice of ) is usually done by min-
imizing cross-validation or generalized cross-validation by Craven and Wahba
(1979). Throughout this paper we will use the cross-validation criterion for

estimation of A, and it is given by

n

OV = & S — ) (13)
=
where fi;(;) indicates the fit at t;, computed by leaving out the j-th data point.
CV(})) is computed for a number of values of ) over a suitable range and then
the minimizing ) is selected.
In this paper we present formula for detecting influential observations on
smoothing parameter in smoothing spline. Deletion formula in the linear model

and the analogous results in smoothing spline are derived in Section 2. An
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example based on the German hyperinflation data (Eubank 1985, 1988) is

given in Section 3.

2. INFLUENCE ON THE SMOOTHING
PARAMETER

For a given A in (1.1), the fitted values &t = ({1, ..., fin)’ are computed by
i = Hy where H = H, is the hat matrix. See Eubank (1988) for details.
Let h;; be the ¢j-th component of H, and Hg be a k x k submatrix of H with
elements in K = {i1,...,4x}. Also,let r = (I — H)y and rg = (r;,..., 7).

One or few observations can be influential on the estimate of smoothing
parameter A. The most naive method is evaluating A— 5\(2-), where S\(i) is the
minimizer of CV or GOV with the i-th case omitted. ) can be found by a grid
search, and determining /A\(z-) requires this process for each of n cases. Further,
A can be sensitive to groups of observations acting together rather than sin-

gle outlying points. If we continue this process to a set K = {t1, ... 1}, we
have to compute Z;“:l ( ;L ) times. This approach is clearly computationally
infeasible. To overcome with this difficulty, Thomas (1991) suggested diagnos-

tics based on simultaneous perturbation of all obervations rather than deleting
single cases. He examined the effect of two types of data perturbations (case
and response, response only) on the GCV estimate \ and derived diagnostics
by applying the local influence method of Cook (1986). By perturbing the

response ¥ only, Thomas (1991) derived the direction of maximum slope;
tmax(y) X (CI - H;\)(I - Hﬁ)2y7 (21)

where ¢ = tr{H (I — H;)} /tr(] — H;) and A is the GCV estimate.

Here we suggest a computationally feasible method of evaluating ;\(i) using
the C'V criterion, and this method can be easily extended to :\(1\"), the mini-
mizer of C'V with k observations in K = {¢y,...,4;} omitted. Let CViy(A) be

the cross-validation with the i-th case omitted, then we can define it as

CVin(A) = —"“Z{% R} . (2.2)
Jsﬂ

497



498 Choongrak Kim and Jong-Woo Jeon

where fi;(; ;) indicates the fit at t;, computed by leaving out i-th and j-th data
point. Equation (2.2) would be very useful if we can write it as functions of
residuals and leverage, however, it is not easy. One alternative way 1s using

the deletion formula in the linear model. So, consider a linear regression model
y=XpB+e, (2.3)

where y is an n-vector of response, X is an n x g full column rank matrix of
known covariates. B is g-vector of unknown coefficients, and € is an n-vector
of independent variables with mean zero and unknown variance o?. We use y;
and x; to denote the i-th row of ¥ and X, respectively, and use the subscript
(1) to indicate the deletion of the i-th observation, thus, for example, X ;
denotes the matrix X with the i-th row deleted. For a set K = {#1,...,%k}
of size k, we define similarly. After fitting the model by the method of least
squares, we have 3 = (X'X)'X'y, § = Py, where P = XX'X)'x'
is hat matrix, and residual vector e = y — §. Let s> = e’e/(n — ¢) be the
unbiased estimator of o2, and p;; = «;(X'X )@} be the ij-th component of
P. Under model (2.3),

Jiy = 2B

= x; (ﬂ _ (X,X)—lwﬁei)

I —pi
" Dji€i
= §— = 2.4
T 1-pi 24)
and
Vik) = "31':3(1()’

= ;|3 — (X' X) 2k (I — Px)"ex]
= ﬁj — '.'Cj(XIX)—liblK(I -— PK)_IGK

= §;—p;x(I — Px)'ex, (2.5)
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where p; - = (Pjiss - -5 Pii)s Px = T (X' X ) 'al, 2g = (2!,,..., ), and

ex = (€i,,...,¢e;,) . Therationale is that both ¢ and i are linear combinations
of hat matrix (P and H, respectively) and y. The only difference is that P
is idempotent, while H is not. By using the result in (2.5), we have

1

CVo(A) = — };{w — 5+ 15 = 5}
J#
1 -1 2
= g{m +hin(I - Hy) "'N} ; (2.6)

where N = {7,j} and h; N = (hji, h;;). Similarly, for a group of observations
in K = {iy,...,1}, we have, by (2.5),
1 R
CViry(A) = — 2 Ay; — Bigu)}?
igK
1
n—k

d_Ari+hixu; (I - Hiyy) 'reg}?,  (27)
€K
where K Uj = {i1,...,%,J}.

Hence, to determine :\(i), t=1,...,n we don’t need to compute CVj;)())
in (2.2); we are only to compute  and H which are avaliable from X by (2.6).
The computational amount required in this process is just 1/n compared to
the naive grid search method, and for groups of size k it is 1/ (Z) of the naive
method. The real computation time depends on data, but that of this process
is approximately 1/n compared to the naive method based on our limited
experience.

To be more specific, the computational amount via the naive method re-
quires n times of computing fi;), ¢ = 1,...,n for fixed A. Therefore, if the
number of grid is m, the total number of computation becomes mn. However,
if we use (2.6), we are only to compute i for fixed A. Hence, the total number
of computation required is m.

The accuracy of computing ) totally depends on the number of grid. There

are other methods such as the golden section method and the bisection method,
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however, the grid search is the safest even though it can be slower than the

golden section or bisection method.

3. EXAMPLE

As an illustrative example we consider the German hyperinflation data
shown in Figure 1. This data consists of values for the logarithm of the money
supply as a function of the logarithm for the premium on a forward contract
for foreign exchange during the German hyperinflation.

Table 1 contains hi, rf = ri/sy/1 — hii, where A is chosen as minimizing
CV, ie., A = 1.28 x 10~*. We find influential observations and groups of
observations on the CV estimate ) using the results in Section 2, and four
largest influential groups of observations on X for k = 1,2,3 are summarized
in Table 2. As shown in this Table, for k = 1, observations 19 and 30 are very
influential. For k = 2, sets (29,30), (29,31), (30,31) are quite influential, and
swamping phenomenon by (29,30) is clear for k = 3. Conclusively, 19, (29,30),
(30,31) are influential on X. Figure 1 shows the spline fit to the German hyper-
inflation data with 19, (29,30), (30,31), and (29,30,31) deleted, respectively.
The local influence approach by Thomas (1991) gives very different results.
It shows that cases 24 and 27 are influential. (See Figure 2). They are nei-
ther singly influential nor jointly influential. Note that 5\(24) = 1.02 x 1074,
:\(27) = 0.80 x 1074, :\(24,27) = 0.73 x 104 while A = 1.28 x 10~*. This difference
may be due to perturbing response only, however, not clear.

After detecting influential observations, we can interpret them in several
ways. First, by removing influential observations the fit could be smoother
if ;\(K) is large. Second, if influential observations show sequential pattern,
they might suggest that we better use variable smoothing parameter instead
of constant smoothing parameter.

The choice of k is quite subjective so far because some appropriate cutoff
value is not suggested yet. Local influence approach suggested by Thomas(1991)
suffers from the same problem. For example, it is very subjective to judge the

case 23 is influential or not.
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Table 1. Leverage and Residual in the German Hyperinflation Data.

case Yi t; hi; ry
1 6.5605 —1.8202 .52400 0.09966
2 6.5474 —1.7958 .48273 —0.11183
3 6.5802 —1.1087 .55732 —0.06486
4 16,5927 —.9927 .42523 0.11303
5 |16.5019 —.6832 .33930 —0.84619
6 |6.5896 —.6539 .32425 0.29326
7 |65414 —-.3960 .17308 0.50160
8 6.4580 —.3930 .17106 —0.42615
9 ]6.5381 —.3653 .15680 0.67090
10 | 6.4977 —.3271 .14882 0.52652
11 }6.4129 —-.3093 .14890 —0.26075
12 | 6.4225 —.1863 .16425 1.21156
13 | 6.2669 —.1839 .16457 —0.51531
14 |6.0839 —.0429 .18958 —0.86404
15 |6.1841 —.0837 .17842 —0.20013
16 | 6.0578 0000 .21054 —0.71485
17 1 6.0774 0999 30138 0.40923
18 | 5.9321 3343 67361 —0.03976
19 | 5.7858 1.1845 .83081 0.58333
20 1 5.5203 1.6369 .47226 1.00237
21 | 5.2718 1.7630 .37636 —1.02903
22 | 5.2421 1.9243 51376 —0.42553
23 | 5.4116 2.4336 .34464 1.33872
24 1 5.1504 2.4774 28146 —1.97715
25 | 5.4239 2.5908 .24098 1.18494
26 | 5.3290 2.6053 .24613 0.05886
27 15.1921 2.7955 .33968 —1.19926
28 | 5.4269 2.9565 .37513 2.92158
29 14,9010 3.1122 52483 —2.35193
30 | 4.7712 3.6169 .70216 —0.15324
31 | 4.7589 3.9176 .89925 0.45570
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Table 2. Four Largest Influential Groups of Observations on the C'V Estimate
Afor k=1, 2,3 in the German Hyperinflation Data. (5\ =1.28 x 107)

k sets ;\(K) x 10* ;\(K)/j\
19 24.28 | 18.97

1 30 16.53 | 12.91
29 747 5.84

31 5.66 4.42

29,30 209.10 | 163.36

2 29,31 144.63 | 112.99
30,31 52.90 | 41.33
19,29 21.68 | 16.94
6,29,30 245.60 | 191.88

3| 7,29,30 243.20 | 190.00
20,29,30 240.50 | 187.89
9,29,30 239.80 | 187.34
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Figure 1. Spline Fit to the German Hyperinflation Data: Original Data
(Solid), Cases Deleted (Broken) (a) Case 19 Deleted (b) Cases 29,30 Deleted
(c) Cases 30,31 Deleted (d) Cases 29,30,31 Deleted.
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Figure 2. Local Influence Approach in the German Hyperinflation Data.
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