• 제목/요약/키워드: statistical image processing

검색결과 269건 처리시간 0.035초

선군집분할방법에 의한 특징 추출 (Feature Extraction by Line-clustering Segmentation Method)

  • 황재호
    • 정보처리학회논문지B
    • /
    • 제13B권4호
    • /
    • pp.401-408
    • /
    • 2006
  • 영상신호의 수직축 및 수평축 화소 성분 분석을 통해서, 영상 내부에 존재하는 각 영역의 군집적 특성을 통계 및 영역적으로 처리 분류함으로써 필요한 특징을 추출할 수 있는 새로운 형태의 영역분할처리 알고리즘을 제시한다. 종래의 점처리나 면처리 방식에 비해 이 방식은 수평축과 수직축 상에서의 연속적인 선처리 방식이라고 할 수 있다. 영상을 구성하는 영역간 경계가 암시적으로 구분되어 있으나, 명시적으로는 불투명하고, 영상 특성의 분기점 또한 불명확하고 중복되어 있음으로 인하여 문턱치처리나 분기점처리로 그 영역간 특정을 분할, 추출하기가 곤란한 경우에 이 방식은 우수한 효과가 있다. 수평축 및 수직축 선처리를 통해 각 영역들의 특성들을 군집으로 처리한 다음 처리한 축과 수직 방향으로 축차적 적응진행처리한다. 그 결과 영상 내 각 영역은 화소값의 중복에도 불구하고 하나의 군집으로 자리매김하면서 군집 고유의 화소 값을 갖는다. 그리고 처리후 영상은 각 군집에 부여한 새로운 화소값으로 변환함으로 필요한 특정이 추출된다. 이 방식은 특히 영역 분할을 통해 시각적 효과를 극대화시킬 필요가 있는 경동맥 초음파 의료영상에서 우수한 결과를 보였다.

Deinterlacing Algorithm Based on Statistical Tests

  • Kim, Yeong-Hwa;Nam, Ji-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권3호
    • /
    • pp.723-734
    • /
    • 2008
  • The main reason for deinterlacing is frame-rate conversion. The other reason for deinterlacing is of course improve clarity and reduce flicker. Using a deinterlacer can help clarity and stability of the image. Many deinterlacing algorithms are available in image processing literatures such as ELA and E-ELA. This paper propose a new statistical deinterlacing algorithm based on statistical tests such as the Bartlett test, the Levene test and the Kruskal-Wallis test. The results obtained from the proposed algorithms are found to be comparable to those from many well-known deinterlacers. However, the results in the proposed deinterlacers are found to be more efficient than other deinterlacers.

  • PDF

웨이브렛 변환 영상 부호화용 고성능 범용 벡터양자화기의 설계 (Design of High Performance Robust Vector Quantizer for Wavelet Transformed Image Coding)

  • 정태연;도재수
    • 한국정보처리학회논문지
    • /
    • 제7권2호
    • /
    • pp.529-535
    • /
    • 2000
  • 본 논문에서는 웨이브렛 변환을 이용한 영상 부호화에서 입력 영상의 통계적 성질에 영향을 받지 않고 부호화 결과에 범용성을 갖는 새로운 벡터 양자화기 설계법을 제안한다. 기존의 벡터 양자화기의 가장 큰 문제점은 양자화대상 영상과 대표 벡터를 생성하기 위한 학습계열간의 통계적 성질의 불일치에 의한 부호화 성능의 열화이다. 그리하여, 본 논문에서는 벡터 양자화기의 대표벡터를 생성하기 위한 학습계열로 독립 난수에 영상의 상관과 에지 성분을 첨가한 모사 영상을 사용하여 종래 방식의 문제점을 해결하는 방법에 대하여 검토하였다. 제안방식에 의해 설계된 벡터양자화기와 대표 벡터 생성에 이용하는 학습계열에 부호화 대상이 되는 영상과 같은 실제의 영상을 사용한 종래 방식에 의해 설계된 벡터 양자화기와 부호화 성능을 컴퓨터 시뮬레이션을 통하여 비교하여 종래 방식의 문제점을 명확하게 밝힘과 동시에 제안 방식으로 설계된 벡터 양자화기가 부호화 성능이 뛰어남을 보인다.

  • PDF

모멘트와 동차성 특징 결합에 의한 텍스쳐 영상 분할 (Texture Images Segmentation by Combination of Moment & Homogeneity Features)

  • 모문정;임종석;이우범;김욱현
    • 한국정보처리학회논문지
    • /
    • 제7권11호
    • /
    • pp.3592-3602
    • /
    • 2000
  • 영상 처리는 크게 영상에 내재된 특성값을 얻어내는 영상분석과, 동일한 성질의 영상을 분류하는 영상분류의 두단계로 이루어진다. 본 논문에서는 텍스쳐에 내재된 일반적인 속성인 거침과 부드러움의 특성 추출을 통해서 영상에 포함된 다양한 텍스쳐를 자동적으로 인식하고 분류하는 방법을 제안한다. 특성추출은 텍스쳐 영상이 지닌 그레이 레벨의 공간적인 의존성을 이용한 통계적 분석에 기반한 것으로 모멘트와 동차성의 조합을 통해서 일반적인 텍스쳐의 속성을 검출하기 때문에 텍스쳐의 구조형태에 크게 영향을 받지 않는 이점을 가지고 있다. 거친 텍스쳐일수록 강하게 반응하는 모멘트와 부드러운 텍스쳐일수록 강하게 반응하는 동차성의 차를 이용하기 때문에 보다 뚜렷한 텍스쳐 분할이 가능하다. 제안한 시스템의 성능 평가를 위해서 다양한 텍스쳐 영상에 제안한 방법을 적용하고, 성공적인 결과를 보인다.

  • PDF

웨이블릿 변환의 저주파수 부대역을 이용한 왜곡 영상 데이터베이스 검색 (Distorted Image Database Retrieval Using Low Frequency Sub-band of Wavelet Transform)

  • 박하중;김경진;정호열
    • 대한임베디드공학회논문지
    • /
    • 제3권1호
    • /
    • pp.8-18
    • /
    • 2008
  • In this paper, we propose an efficient algorithm using wavelet transform for still image database retrieval. Especially, it uses only the lowest frequency sub-band in multi-level wavelet transform so that a retrieval system uses a smaller quantity of memory and takes a faster processing time. We extract different textured features, statistical information such as mean, variance and histogram, from low frequency sub-band. Then we measure the distances between the query image and the images in a database in terms of these features. To obtain good retrieval performance, we use the first feature (mean and variance of wavelet coefficients) to filter out most of the unlikely images. The rest of the images are considered to be candidate images. Then we apply the second feature (histogram of wavelet coefficient) to rank all the candidate images. To evaluate the algorithm, we create various distorted image databases using MIT VisTex texture images and PICS natural images. Through simulations, we demonstrate that our method can achieve performance satisfactorily in terms of the retrieval accuracy as well as the both memory requirement and computational complexity. Therefore it is expected to provide good retrieval solution for JPEG-2000 using wavelet transform.

  • PDF

에지 검출을 위한 통계적 검정법 (Statistical Tests for Edg Detection)

  • 임동훈;성신희
    • 한국정보처리학회논문지
    • /
    • 제7권3호
    • /
    • pp.1021-1024
    • /
    • 2000
  • In this paper we describe a nonparametric Wilcoxon test and a parametric Z test based on statistical hypothesis testing for the detection of edges. We use the threshold determined by specifying significance level $\alpha$, while Bovik, Huang and Munson[4] consider the range of possible values of test statistics for the threshold. From the experimental results of edge detection, the Z method performs sensitively to the noisy image, while the Wilcoxon method is robust over both noisy nd noise-free images. Comparison with our statistical tests and Sobel operator shows that our tests perform more effectively in both noisy and noise-free images.

  • PDF

일반화 대칭 변환을 이용한 축소 영상에서의 얼굴특징추출 (Facial Feature Extraction in Reduced Image using Generalized Symmetry Transform)

  • 팽영혜;정성환
    • 한국정보처리학회논문지
    • /
    • 제7권2호
    • /
    • pp.569-576
    • /
    • 2000
  • 일반화 대칭 변환(Generalized Symmetry Transform : GST)은 디칭성을 이용하여 영상의 사전 정보 없이 얼굴 특징의 위치를 추출할 수 있는 방법이다. 그러나, 눈, 코, 입 등의 특징보다 마스크의 크기가 커야 하므로 많은 처리시간이 필요하다. 그리고, 얼굴의 특징을 결정하기 위해 통계적 처리가 수반되는 중심선 계산으로 인해 처리 과정이 복잡하다. 이러한 단점을 개선하기 위해, 본 논문에서는 두 가지 방법을 제안하였다. 첫째, 처리 시간을 단축하기 위해 원 영상 대신 영상의 정보를 충분히 가지는 축소 영상을 사용하였다. 둘째, 중심선 계산을 위해 복잡한 통계적 처리 대신 추출된 첨두치의 위치를 이용하였다. 제안된 방법의 성능을 살펴보기 위해, 정면, 회전, 안경, 수염이 있는 영상 등 200개의 영상에 대해 실험하였다. 그 결과, 제안된 방법은 85%의 특징 탐지율과 기존의 방법에 비해 약 53배 이상감소된 처리시간을 나타내었다.

  • PDF

Algorithm for Discrimination of Brown Rice Kernels Using Machine Vision

  • C.S. Hwang;Noh, S.H.;Lee, J.W.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.823-833
    • /
    • 1996
  • An ultimate purpose of this study is to develop an automatic brown rice quality inspection system using image processing technique. In this study emphasis was put on developing an algorithm for discriminating the brown rice kernels depending on their external quality with a color image processing system equipped with an adaptor for magnifying the input image and optical fiber for oblique illumination. Primarily , geometrical and optical features of sample images were analyzed with unhulled paddy and various brown rice kernel samples such as sound, cracked, green-transparent , green-opaque, colored, white-opaque and brokens. Secondary, an algorithm for discrimination of the rice kernels in static state was developed on the basis of the geometrical and optical parameters screened by a statistical analysis(STEPWISE and DISCRIM Procedure, SAS ver.6). Brown rice samples could be discriminated by the algorithm developed in this study with an accuracy of 90% to 96% for the sound , cracked, colored, broken and unhulled , about 81% for the green-transparent and the white-opaque and about 75% for the green-opaque, respectively. A total computing time required for classification was about 100 seconds/1000 kernels with the PC 80486-DX2, 66MHz.

  • PDF

Development of Real-time Landslide Inspecting and Monitoring System

  • Hur Chul;Jeon, Yang-Bae;Kim, Choon-Sik;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.243-243
    • /
    • 2000
  • This paper introduces a visual inspecting and monitoring system based on an image processing technique. We propose an image processing method for analyzing landslide movement in real time. The method adopts Laplacian of Gaussian operator to extract linear features for the captured images and uses a linear matching algorithm to distinguish the matching error for those features. When the algorithm is processed, motion parameters such as displacement area and its direction are computed. Once movement is recognized, displacements are estimated graphically with statistical amount in the image plane. The simulation results are shown us to verify the effectiveness of the developed method.

  • PDF

PROPERTIES OF RANDOM SIGNALS IN WAVELET DOMAIN

  • Lee, Young Seock;Kim, Sung Hwan
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제3권1호
    • /
    • pp.107-114
    • /
    • 1999
  • In many applications (e,g., identification of non-destructive testing signal and biomedical signal and multiscale analysis of image), it is of interest to analyze and identify phenomena occurring at the different scales. The recently introduced wave let transforms provide a time-scale decomposition of signals that offers the possibility of such signals. However, there is no corresponding statistical properties to development of multiscale statistical signal processing. In this paper, we derive such properties of random signals in wavelet domain.

  • PDF