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PROPERTIES OF RANDOM S IGNALS IN
WAVELET DOMAIN
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Abs t ract

In many app l i cat i ons (e ,g . , i dent i f i cat i on of non- des t r uct ive t es t ing s i gna l and
b i omed i ca l s i gna l and mu l t i s ca l e ana lys i s of image ) , i t i s of in t er es t t o ana lyze and

i dent i fy phenomena occur r ing at t he di f f er ent s ca l es . The r ecent ly in t r oduced wave l e t
t r ans f or ms pr ov i de a t ime- s ca l e decompos i t i on of s i gna l s t hat of f er s t he poss i b i l i t y
of such s i gna l s . However , t her e i s no cor r esponding s t at i s t i ca l pr oper t i es t o deve l opment
of mu l t i sca l e s t at i s t i ca l s i gna l pr oces s ing . In t h i s paper , we der ive such pr oper t i es
of r andom s i gna l s in wave l e t doma in .

I. Int rod uct io n1)

The wavelet transform have been used mainly in the fields of signal processing, image
coding and compression,and in certain areas of mathematics, as in solution of partial differential
equations or numerical analysis[1][2][3][4]. Recently an enormous interest has emerged
on the use of wavelet transforms in several areas. One of these areas is to understand the
statistical behavior of random signals in wavelet domain. Basseville et al.[5] studied random
processes defined on a multiscale grid of wavelet decomposition coefficients but its relationship
to conventional notions of stationarity for random processes is unclear. Wornell[6] used
wavelet transform to synthesize 1/f processes. His work assumes a very simple correlation
structure for the wavelet coefficients are all independent. And also Marsry[7] studied stationary
increment processes on the wavelet domain and applied to fractional Brownian motion(fBm)
but his work did not consider mismatching between wavelets in L 2 ( R ) and ensembles of
stationary increment processes in L 1( R ) . Dijkerman[8] used wavelet transform to analyze
time domain AR processes but his research was confined that characteristic of time domain
AR process representations in wavelet domain and has not tried to an AR modeling in
wavelet domain.

While any deterministic signals in L 2 ( R ) is completely characterized by the coefficients
of their wavelet transform, the same is not necessarily true of a random signals. In general,
the sample paths of random signals may not be a subset of L 2 ( R ) signal space, in which
case the inner products between wavelets and random signals are not well defined and dangerous
to divergence. But if we confined random signals as wide sense stationary signals and choose
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a proper wavelet, it was possible for random signals to converge in L 2 ( R ) with probability

one. In this paper we derive properties of wavelet-transformed wide sense stationary signal
and apply real ultrasonic signal.

II. P re limina ry

One of the most powerful concepts in the class of random processes is that of stationarity
and the extension and use of this concept to wavelet domain represents one of the goal
of our works. For a stationary process X ( t) , we focus an wide-sense stationary(WSS) process
which is the mean value is independent of the time and that the autocorrelation depends
only on the time difference as
E [ X ( t ) ] = C , where C is a constan t , (1)

E [ X ( t )( X ( t - ) ] = X X ( ) . (2)

The mean value E [ X ( t) ] will usually not enter our discussion because it is normally assumed
to be zero. Given an WSS process X ( t) , its probability distribution function F X (x ) is Gaussian
if the probability distribution function is

F X ( x ) =
1

2 2
x

x

-
ex p [-

1

2 2
x

(x - x ) 2]dx . (3)

In other word, the WSS signals with Gaussian distribution are characterized by (1),(2),(3)
and two WSS processes X ( t) and Y ( t) are said to be jointly WSS if the process satisfies
the following relation

X Y ( ) = E [ X ( t) Y ( t - ) ] (4)

and the autocorrelation functions (2) and (4) have finite values under assuming an WSS.
The basic fact about wavelet transforms is that they are localized in time, contrary to

what happen to Fourier transform. This makes wavelet transforms allow us to analyze a
series into both time and scale. The wavelet transforms are generated by a function ( t)
called mother wavelet with

a , b( t ) = |a |
- 1

2 ( t - b
a

) for a R - {0}, b R , (5)

the wavelet transform is defined as

( W f ) ( a , b) =
-

f ( t) *
a , b( t ) dt = <f , a , b > , f ( t) L 2 ( R ) (6)

* is denoted by complex conjugate. ( W f ) ( a , b) is therefore the correlation of f ( t) with
shifted by b and scaled by a . Another interpretation is that ( W f )( a , b) a , b( t) is

simply the projection of onto a , b .
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a=2 a=1 a=0.5
Fig.1. wavelets for several scale values of a

Figure 1 displays wavelets along with scale 2, 1, 0.5. Since the analyzing functions for
the transform are all shifted and scaled versions of the mother wavelet, the time localization
afforded by the transform increases with decreasing scale at the expense of frequency
localization.
The tradeoff between time and frequency localization with scale is a distinguishing feature
of
wavelet transform. It makes the transform particularly well suited to the detection and analysis
of signals.

III. P ro pe rt ie s of WSS s igna ls in wave let do ma in

In general, the sample paths of WSS processes may not be a subset of L 2 ( R ) but
that of L 1( R ) , in which case the inner products between wavelets and WSS signals are
not well defined and dangerous to divergence. In this point, the statistical properties of
transformed
signals are proven to be bounded.

Let X ( t) , t R be an WSS signal with zero mean and ( u ) = E [X ( t) X ( t + u ) ]

be the autocorrelation function of X ( t) . We assume wavelet ( t) is bounded and compactly

supported,
there is A , B R such that | ( t) | A and |suppor tn ess of ( t) | B . We know that

a , b( t) = 2 - a / 2 ( 2 - a t - b) ,

we have | a , b( ) | = 2 - aA and |suppor tn ess of a , b( t) | 2 aB ,
and denote by K , the variation of ( t) . the wavelet transform of WSS signal is

( W X ) ( a , b) =
-

X ( t) *
a , b( t ) d t (7)

and its autocorrelation function is

a , b =
-

( u ) du
0

dt ( u ) a , b( t) a , b( t + |u |) . (8)
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From (8) we define an partial autocorrelation function

a , b =
T

- T
du

T

0
dt ( u ) a , b( t) a , b( t + |u |) (9)

and the relation between (8) and (9) is a , b = lim
T

a , b .

(9) is expanded following as

a , b =
T

- T
d u ( u )

T

0
dt a , b( t) a , b( t) + ( t) (10)

where
T

0
d t a , b( t) a , b( t) is expanded following as

T

0
dt a , b( t) a , b( t) ( 2 - a / 2 A ) 2 |suppor t ( t) | A 2 |suppor t ( t) | (11)

and also

( t) = ( u ){
T

0
dt a , b( t + u ) a , b( t) -

T

0
d t a , b( t) a , b( t)}. (12)

From (12), {
T

0
dt a , b( t + u ) a , b( t) -

T

0
d t a , b( t) a , b( t)}is expanded following as

|
T

0
dt a , b( t + u ) a , b( t) -

T

0
d t a , b( t) a , b( t) |

T

0
d t | a , b( t) || a , b( t + u ) - a , b( t) |

(13)

and the right side of (13) is expanded to

T

0
dt | a , b( t) | | a , b( t + u ) - a , b( t) | (14)

2 - a / 2A
T

0
d t | a , b( t + u ) - a , b( t + u - 1) + a , b( t + u - 2)

+ a , b( T + u - 2) - …… + a , b( t + 1) - a , b( t) |

and also the right side of (14) holds (15) by Cauchy-Schwartz inequality

2 - a / 2A
T

0
dt | a , b( t + u ) - a , b( t + u - 1) + a , b( t + u - 2) (15)

+ a , b( T + u - 2) - …… + a , b( t + 1) - a , b( t) |

2 - a / 2A
T

0
dt | a , b( t + u ) - a , b( t + u - 1) | + | a , b ( t + u - 2)

+ a , b( T + u - 2) | - …… + | a , b( t + 1) - a , b( t) |
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2 - a / 2A 2 - a / 2K |u | = 2 - aA K |u | < .

Consequently | ( t) | is following as

| ( t) | A K 2 - a
T

- T
du | ( u ) |u | . (16)

By (11) and (16), a , b is

a , b

T

- T
du{ ( u )A 2 |suppor t ( t) | + 2 - aA K ( u ) |u |} (17)

so,

a , b = lim
T

a , b < . (18)

Hence, by (17) and (18), we have that a , b is bounded and also a , b is bounded by
relation a , b = lim

T
a , b . So the derivated results imply that the WSS signals in the

transform domain are bounded and at least not diverge if wavelet is bounded and compactly
supported and it holds crosscorrelation between another scale wavelet representations of
WSS signal.

In discrete time domain, wavelet transform is computed by a filtering operation followed
by decimation by a fact of two. This filtering operation called perfect reconstruction filter
bank(PRQMF) is depicted by Figure 2. in which H 0 ( z ) is a high pass filter, G0 ( z ) is
a low pass filter and the two filters construct analysis stage of PRQMF and also synthesis
stage is constructed by H 1( z ) and G 1( z ) has a power complementary relationship to analysis
stage.

By the multiresolution analysis property of wavelet transform, the downsampled resulting
sequence of G0 ( z ) are then generated by performing the same filtering operation of analysis
stage and so on recursively.

Fig. 2. Filter structure corresponding to discrete time wavelet transform analysis and synthesis
stage

In Figure 2, given an WSS signal X ( n ) as an input of PRQMF, the statistical behavior
of output is unknown. But the decimated version X D ( n ) of WSS signal X ( n ) is WSS because
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X D ( n ) = X ( 2 i n ) (19)
and

E [ X D ( n ) X *
D ( n + ) ] = E [ X (2 i n )X * (2 i ( n + ) ) ] (20)

= E [X ( m )X ( m + ' ) * ]

= ( ' ) , where 2 in = m and ' = 2 i .

Since the transfer functions H 0 ( z ) and G0 ( z ) are operators of linear transformation, so
their outputs are WSS by

E [ u 0 ( n ) u *
0 ( n + ) ] (21)

= E [ X ( n ) X * ( n + ) ] u 0 ( ) u 0 ( - )

= ( ) u 0 ( ) u 0 ( - ) , where u i {g 0 , h 0} and is a convolution
operator.

Let v i( n ) be the transfer function of the i-th scale, the i-th output of PRQMF, X i ( n )

is

X i ( n ) =
k

v i( k) X (2 in - k) , (22)

its autocorrelation function is

E [ X i ( n ) X *
i ( m ) ] = E [

k k '
v i( k) X (2 in - k) v *

i ( k ' ) X * ( ( 2 i m - k ' ) ] (23)

=
k

v i( k) v *
i ( k ' ) (2 i ( n - m ) - k ' , - k ' )

and also the crosscorrelation of X i and X j corresponding to two distinct scales, i j

is

E [ X i ( n ) X *
j ( m ) ] = E [

k
v i ( k ) X (2 in - k) v *

j ( k ' ) X *
j ( (2 j m - k ' ) ] (24)

=
k

v i ( k) v *
j ( k ' ) ( ' - k ' , - k ' )

by Fubini's theorem and substituting ' = 2 in - 2 j m - k + k ' .
From observation of (23) and (24), it implies that the wavelet coefficients of WSS

signal are WSS at same scale and jointly WSS at two distinct scales and that an autocorrelation
function, (23) of wavelet coefficients has much stronger autocorrelated-property than that
of the time series.

For example, assume the autocorrelation function ( n - m ) = e - |n - m | ,

R + { , },which is exponentially decreasing to the time difference |n - m | , it is frequently
considered for the Gaussian process, the corresponding autocorrelation function i ( n - m )

of wavelet coefficients at the i-th scale is e - 2 i |n - m | which is exponentially decreasing
to the translation difference 2 i |n - m | as figure 3. It imply that an autocorrelation function
in wavelet domain has much whitening comparing with that in time domain as good properties.
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Fig. 3. Autocorrelation functions in time domain and wavelet domain

For real signal applications, we generate ultrasonic signal as fig. 4, it is collected from
type 303 stainless steel by 6MHz unfocused ultrasonic sensor(A 109, Panametrics Ltd.).

Fig. 4. Collected ultrasonic signal

Their autocorrelation in time and wavelet domain are fig. 5, fig. 6, respectively.

Fig. 5. Autocorrelation in time domain
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Fig. 6. Autocorrelation in wavelet domain

Figure 5 and figure 6 imply that the wavelet coefficients has much stronger
autocorrelated-property than that of the time series for real signals.

IV. Co nc lus io ns

In this paper, we analyze WSS signals and drives their properties in wavelet domain. In
wavelet domain autocorrelation function of wavelet coefficients is bounded and exponentially
depending on translation difference ( n - m ) . its result implies that an autocorrelation function
in wavelet domain has much whitening comparing with that in time domain as good properties.
These results will be applied to wavelet domain statistical modeling, system identification
and various fields of statistical signal processing.
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