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Abstract

In many applications(e,g., identification of non-destructive testing signal and
biomedical signal and nultiscale analysis of image), it is of interest to analyze and
ident ify phenonena occurring at the different scales. The recently introduced wavel et
transforms provide a time-scale deconposition of signals that offers the possibility
of such signals. However , there isno corresponding statistical propertiestodevel opment
of multiscale statistical signal processing. In this paper, we derive such properties
of random signals in wavelet domain.

[. Introduction

The wavelet transform have been used mainly in the fields of signal processing, image
coding and compression, and in certain areas of mathematics, asin solution of partia differential
equations or numerical analysis[1][2][3][4]. Recently an enormous interest has emerged
on the use of wavelet transforms in several areas. One of these aress is to understand the
statistical behavior of random signals in wavelet domain. Basseville et al.[5] studied random
processes defined on amultiscale grid of wavel et decomposition coefficientsbut itsrelationship
to conventional notions of stationarity for random processes is unclear. Wornell[6] used
wavelet transform to synthesize Uf processes. His work assumes a very simple correlation
structurefor thewavelet coefficientsare all independent. And also Marsry[7] studied stationary
increment processes on the wavelet domain and applied to fractional Brownian motion(fBm)
but his work did not consider mismatching between wavelets in L ?(R) and ensembles of
stationary increment processes in L *(R). Dijkerman[8] used wavelet transform to analyze
time domain AR processes but his research was confined that characteristic of time domain
AR process representations in wavelet domain and has not tried to an AR modeling in
wavelet domain.

While any deterministic signalsin L 2(R) is completely characterized by the coefficients
of their wavelet transform, the same is not necessarily true of a random signals. In general,
the sample paths of random signals may not be a subset of L ?(R) signal space, in which
casetheinner productsbetween wavel etsandrandom signalsarenot well defined and dangerous
to divergence. But if we confined random signals as wide sense stationary signals and choose
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a proper wavelet, it was possible for random signals to converge in L 2(R) with probability

one. In this paper we derive properties of waveet-transformed wide sense stationary signal
and agpply rea ultrasonic signa.

Il. Preliminary

One of the most powerful concepts in the class of random processes is that of stationarity
and the extension and use of this concept to wavelet domain represents one of the goad
of our works. For a stationary process X (t), we focus an wide-sense gtationary (W SS) process
which is the mean vaue is independent of the time and that the autocorrelation depends
only on the time difference as
E [X(t)]= C, where C is a constant, @]

E IX(OX(t- )] = »x (2). @

Themeanvaue E [X (t)] will usualy not enter our discussion becauseitisnormally assumed
tobe zero. Given an WSSprocess X (t), itsprobability distribution function F  (x) is Gaussian
if the probability distribution function is

1 x 1
Fx(X):WIMGXp [ E(X- #x)z]ﬂ- C)

In other word, the WSS signals with Gaussian distribution are characterized by (2),(2),(3)
and two WSS processes X (t) and Y(t) are said to bejointly WSS if the process satisfies
the following relation

rxv(n) = E [X()Y(t- 7)] 4)
and the autocorrelation functions (2) and (4) have finite values under assuming an WSS,

The basic fact about wavelet transforms is that they are localized in time, contrary to
what happen to Fourier transform. This makes wavelet transforms alow us to analyze a

series into both time and scale. The wavelet transforms are generated by a function #(t)
called mother wavelet with

.1
() = la| 2@(L) for a=R- {0}, beR | ©)
the wavelet transform is defined as
(Wf)(a,b)= Iw F) T u(t)dt=<f, Ty >, f(1) EL*(R) (6)

* is denoted by complex conjugate. (W f)(a,b) is therefore the correlation of f(t) with
¥ shifted by b and scaled by a . Another interpretation is that (W f )(a,b) &, ,(1) is

smply the prgection of onto &, , .
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a=2 a=1 a=0.5
Fig.1. wavelets for severa scale values of a

Figure 1 displays wavelets aong with scale 2, 1, 0.5. Snce the analyzing functions for
the transform are al shifted and scaled versions of the mother wavelet, the time localization
afforded by the transform increases with decreasing scale at the expense of frequency
localization.

The tradeoff between time and frequency localization with scale is a distinguishing feature
of

wavelet transform. It makes the transform particularly well suited to the detection and analysis
of signals.

lll. Properties of WSS signals in wavelet domain

In general, the sample paths of WSS processes may not be a subset of L 2(R) but

that of L '(R), in which case the inner products between wavelets and WSS signds are
not well defined and dangerous to divergence. In this point, the statistical properties of
transformed
signals are proven to be bounded.

LetX (t), t =R be an WSS signal with zero mean and y(u) = E [X ()X (t+ u)]

be the autocorrelation function of X (t). We assume wavelet ¥{(t) is bounded and compactly
supported,

there isA ,B =R such that |P(t)|<A and [supportness of P(t)|<B . We know that
T, () = 27 Y22 *t- b,

we have |&,,(-)| = 2 °A and |supportness of &, ,(1)|<2°B ,
and denote by K , the variation of ¥(t). the wavelet transform of WSS signa is

(WX)(a,b)= [ X ()T ,(t)dt (7)
and its autocorrelation function is

Cow= [ _(u)du [ dty (u) W) Ta(te u ). (®)
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From (8) we define an partid autocorrelation function

Eav= | _duf dty (T, (0u(t+ lu) ©

and the relation between (8) and (9) is .= TIianEa,b.

(9) is expanded following as

Gan= [ duy(u [ dt @ (0T, + e (10)

;
where fo dt &, (1) Top(t) is expanded following as

fOTdt T, o(0) Tap(t) < (27 72A)? |supportP(1)|< A *|suppor t¥(1)| (11)
and aso
e = A [ ot Too(t+ WPas() - [ A0 Zun(n} (12)

T T
From (12), {fo dt @, o(t+ U)W,y - fo A&, o(Y) wa,b(t)}is expanded following as

T T
| ot Zoottr 0@ - [ a0 Ty |

) (13
éfo dt [T o()|Pas(t+ u) - Top(h)]
and the right side of (13) is expanded to
T
fo dt [, () [[Pan(t+u) - Fou(t)] (14)
T
< 2'5"2Af0 dt @, o(t+ u) - @ o(t+u- 1) + @, (t+ u- 2)
+ w‘a'b(T‘l' u- 2) A, + w‘a'b(t‘l' l) - w‘a'b(t)l
and also the right side of (14) holds (15) by Cauchy-Schwartz inequality
T
2'5"2Af0 dt |, o(t+ u) - @ao(t+u- 1) + T, (t+ u- 2) (15)

+ T p(T+u-2) - ... + T(t+ 1) - T ()]
T
< 2'5"2Af0 At |@, o(t+ U) - Tap(t+u- D] + |[Tou(t+ u- 2)
+ Tp(T+u-2) - ... + T p(t+ 1) - T (]
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< 2N 27K |ul = 27 °AK |u] < oo.

Consequently |(1)] is following as
i T
()] < AK 27 [ duly (u)u ] (16)

By (1) and (16), &,, is

Con = [ du{y(u)A? support B()| + 2 AK H(w)lu] (19
S0,
éa,b: T”anéa,b<oo- (18)

Hence, by (17) and (18), we have that £, , is bounded and aso &, , is bounded by
relation &, ,= TIianEa,b. So the derivated results imply that the WSS signals in the

transform domain are bounded and at least not diverge if wavelet is bounded and compactly
supported and it holds crosscorrelation between another scale wavelet representations of
WSS signal.

In discrete time domain, wavelet transform is computed by afiltering operation followed
by decimation by a fact of two. This filtering operation called perfect reconstruction filter
bank(PRQMF) is depicted by Figure 2. in which H,(z) is a high pass filter, G,(z) is
a low pass filter and the two filters construct analysis stage of PRQMF and aso synthesis
stageisconstructed by H,(z) and G,(z) hasapower complementary relationship to analysis
stage.

By the multiresolution analysis property of waveet transform, the downsampled resulting
sequence of Gy(z) are then generated by performing the same filtering operation of analysis

stage and so on recursively.

Fig. 2. Filter structure corresponding to discrete time wavel et transform anaysis and synthesis
stage

In Figure 2, given an WSS signal X (n) as an input of PRQMF, the statistical behavior
of output isunknown. But the decimated version X ,(n) of WSSsignal X (n) is WSSbecause
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Xp(n) = X(2'n) (19
and
E [Xp(nXp(n+ ] = E[X@2'NX (2'(n+ 2)] (20)

E[X (M)X (m+ )]
vy (), where 2n=mand =2~

Since the trandfer functions H,(z) and Gy(z) are operators of linear transformation, so
their outputs are WSS by

E[uo(n) up(n+ 7)] 21
= E[X(nNX (n+ 2] & uy(d) & ug(- 2
= (1) ® Ug(2) ® Ug(- ), where u; € {g,,h} ahd & is a convolution
operator.

Let v;(n) be the transfer function of the i-th scale, the i-th output of PROMF, X (n)
is

Xi(n) = ;vi(k)X(zin- k), (22)
its autocorrelation function is

E X (mXxi(m] = E [ZXvi(k)X (2'n- Kvi(k)X ' ((2'm- k)] (23)
= 2k vi(k) @' (n- m)- k- k)

and also the crosscorrelation of X ; and X; corresponding to two distinct scales, i+
is

E[X,(nX,(m] = E [kZVi(k)X(zin- K)v, (k)X ((2'm- k)] (24)
= 2Ky (k)7 (7- K- k)

by Fubini's theorem and substituting 7 = 2'n- 2'm- k+ k'.

From observation of (23) and (24), it implies that the wavelet coefficients of WSS
signal are WSS at same sca e andj ointly WSS at two distinct scales and that an autocorrelation
function, (23) of wavelet coefficients has much stronger autocorrelated-property than that
of the time series.

For example, assume the autocorrelation function y (n- m)= Jle
R"D {2, a},whichisexponentially decreasingtothetimedifference |n- m|,itisfrequently
considered for the Gaussian process, the corresponding autocorrelation function ¢, (n- m)

- a|n- m|
i)

of wavelet coefficients at the i-th scale is ie 2" ™ which is exponentially decreasing

to the tranglation difference 2' |n- m| as figure 3. It imply that an autocorrelation function
in wavel et domain has much whitening comparing with that in time domain as good properties.
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Fig. 3. Autocorreation functions in time domain and wavelet domain

For real signal agpplications, we generate ultrasonic signal as fig. 4, it is collected from
type 303 stainless steed by 6MHz unfocused ultrasonic sensor(A 109, Panametrics Ltd.).
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Fig. 4. Collected ultrasonic signa

Their autocorrelation in time and wavelet domain are fig. 5, fig. 6, resectively.
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Fig. 5. Autocorrelation in time domain
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Fig. 6. Autocorrelation in wavelet domain

Figure 5 and figure 6 imply that the wavelet coefficients has much stronger
autocorrelated-property than that of the time series for red signals.

IV. Conclusions

In this paper, we andyze WSS signals and drives their properties in wavelet domain. In
wavelet domain autocorrelation function of wavelet coefficients is bounded and exponentially
depending on trandlation difference (n- m).itsresult impliesthat an autocorrelation function
in wavel et domain has much whitening comparing with that in time domain as good properties.
These reaults will be applied to wavelet domain statistical modeling, system identification
and various fields of statistical signal processing.

REFERENCES

[1 I. Doroslovachi, H. Fan, "Wavelet Based Linear System Modeling and adaptive Filtering,"
Trans. on SP, Voal. 44, No. 5, pp. 1156-1167, May 1996.

[2] S. Narayan, A. M. Peterson and M. J. Narasima, " Transform Domain LM S Algorithm,"
IEEE Trans. on ASSP, Vol. 31, pp. 609-615, June 1993.

[3] O. Rioul, M. Vetterli, "Wavelet and Sgna Processng,” |IEEE Sgna Processing

Magazine, Vol. 8, No. 4, pp. 14-38, October 1991

[4] P. Vaidynathan, Z. Doganata, "The Role of Lossless Systems in Modern Digital Signal
Processing,” |IEEE Trans. on Education, Special Issue on Circuits and Systems, Vol.
32, No. 3, pp. 181-197, August 1989.

[5] M. Basseville et a ., "Modeling and Estimation of Multiresolution Stochastic Processes,”
IEEE Trans. on Inform. Theory, Vol. 38, pp. 766-784, March 1992.

[6] G.W. Wornéll, "A Karhunnen-Loeve-like expansion for 1/f processes viawavelets," |EEE
Trans. on SP, Voal. 40, pp.611-623, March 1992.

[7] Stamatis Cambanis, Elias Magry, "Wavelet Approximation of Deterministic and Random
Sgnals:Convergence Properties and Rates,” IEEE Trans. on Information Theory, Vol.
40, No. 4, July 1994,

[8] W. Dijkerman, R. Mazumdar, "Wavelet Representations of Stochastic Processes and
Multiresolution Stochastic Models," Trans. on SP, Vol. 42, pp. 1640-1652, July 1994,

*Department of Electronics Eng., Chung-Woon Univ.
ysee @cwunet.ac.kr
Department of Electrical Eng., Univ. of Seoul



