• Title/Summary/Keyword: statistical engineering

Search Result 5,532, Processing Time 0.039 seconds

A Combined Process Control Procedure by Monitoring and Repeated Adjustment

  • Park, Changsoon
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.773-788
    • /
    • 2000
  • Statistical process control (SPC) and engineering process control (EPC) are based on different strategies for processes quality improvement. SPC reduces process variability by detecting and eliminating special causes of process variation. while EPC reduces process variability by adjusting compensatory variables to keep the quality variable close to target. Recently there has been needs for a process control proceduce which combines the tow strategies. This paper considers a combined scheme which simultaneously applies SPC and EPC techniques to reduce the variation of a process. The process model under consideration is an integrated moving average(IMA) process with a step shift. The EPC part of the scheme adjusts the process back to target at every fixed monitoring intervals, which is referred to a repeated adjustment scheme. The SPC part of the scheme uses an exponentially weighted moving average(EWMA) of observed deviation from target to detect special causes. A Markov chain model is developed to relate the scheme's expected cost per unit time to the design parameters of he combined control scheme. The expected cost per unit time is composed of off-target cost, adjustment cost, monitoring cost, and false alarm cost.

  • PDF

A New Form of Nondestructive Strength-Estimating Statistical Models Accounting for Uncertainty of Model and Aging Effect of Concrete

  • Hong, Kee-Jeung;Kim, Jee-Sang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.230-234
    • /
    • 2009
  • As concrete ages, the surrounding environment is expected to have growing influences on the concrete. As all the impacts of the environment cannot be considered in the strength-estimating model of a nondestructive concrete test, the increase in concrete age leads to growing uncertainty in the strength-estimating model. Therefore, the variation of the model error increases. It is necessary to include those impacts in the probability model of concrete strength attained from the nondestructive tests so as to build a more accurate reliability model for structural performance evaluation. This paper reviews and categorizes the existing strength-estimating statistical models of nondestructive concrete test, and suggests a new form of the strength-estimating statistical models to properly reflect the model uncertainty due to aging of the concrete. This new form of the statistical models will lay foundation for more accurate structural performance evaluation.

Large-Sample Comparisons of Statistical Calibration Procedures When the Standard Measurement is Also Subject to Error: The Replicated Case

  • Lee, Seung-Hoon;Yum, Bong-Jin
    • Journal of the Korean Statistical Society
    • /
    • v.17 no.1
    • /
    • pp.9-23
    • /
    • 1988
  • The classicla theory of statistical calibration assumes that the standard measurement is exact. From a realistic point of view, however, this assumption needs to be relaxed so that more meaningful calibration procedures may be developed. This paper presents a model which explicitly considers errors in both standard and nonstandard measurements. Under the assumption that replicated observations are available in the calibration experiment, three estimation techniques (ordinary least squares, grouping least squares, and maximum likelihood estimation) combined with two prediction methods (direct and inverse prediction) are compared in terms of the asymptotic mean square error of prediction.

  • PDF

Designing Statistical Test for Mean of Random Profiles

  • Bahri, Mehrab;Hadi-Vencheh, Abdollah
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.432-445
    • /
    • 2016
  • A random profile is the result of a process, the output of which is a function instead of a scalar or vector quantity. In the nature of these objects, two main dimensions of "functionality" and "randomness" can be recognized. Valuable researches have been conducted to present control charts for monitoring such processes in which a regression approach has been applied by focusing on "randomness" of profiles. Performing other statistical techniques such as hypothesis testing for different parameters, comparing parameters of two populations, ANOVA, DOE, etc. has been postponed thus far, because the "functional" nature of profiles is ignored. In this paper, first, some needed theorems are proven with an applied approach, so that be understandable for an engineer which is unfamiliar with advanced mathematical analysis. Then, as an application of that, a statistical test is designed for mean of continuous random profiles. Finally, using experimental operating characteristic curves obtained in computer simulation, it is demonstrated that the presented tests are properly able to recognize deviations in the null hypothesis.

Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality

  • Malhotra, Ruchika;Jain, Ankita
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.241-262
    • /
    • 2012
  • An understanding of quality attributes is relevant for the software organization to deliver high software reliability. An empirical assessment of metrics to predict the quality attributes is essential in order to gain insight about the quality of software in the early phases of software development and to ensure corrective actions. In this paper, we predict a model to estimate fault proneness using Object Oriented CK metrics and QMOOD metrics. We apply one statistical method and six machine learning methods to predict the models. The proposed models are validated using dataset collected from Open Source software. The results are analyzed using Area Under the Curve (AUC) obtained from Receiver Operating Characteristics (ROC) analysis. The results show that the model predicted using the random forest and bagging methods outperformed all the other models. Hence, based on these results it is reasonable to claim that quality models have a significant relevance with Object Oriented metrics and that machine learning methods have a comparable performance with statistical methods.

A Study on the Classification of Ultrasonic Liver Images Using Multi Texture Vectors and a Statistical Classifier (다중 거칠기 벡터와 통계적 분류기를 이용한 초음파 간 영상 분류에 관한 연구)

  • 정정원;김동윤
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.433-442
    • /
    • 1996
  • Since one texture property(i.e coarseness, orientation, regularity, granularity) for ultrasound liver ages was not sufficient enough to classify the characteristics of livers, we used multi texture vectors tracted from ultrasound liver images and a statistical classifier. Multi texture vectors are selected among the feature vectors of the normal liver, fat liver and cirrhosis images which have a good separability in those ultrasound liver images. The statistical classifier uses multi texture vectors as input vectors and classifies ultrasound liver images for each multi texture vector by the Bayes decision rule. Then the decision of the liver disease is made by choosing the maximum value from the averages of a posteriori probability for each multi texture vector In our simulation, we obtained higtler correct ratio than that of other methods using single feature vector, for the test set the correct ratio is 94% in the normal liver, 84% in the fat liver and 86% in the cirrhosis liver.

  • PDF

Statistical evaluation of the monotonic models for FRP confined concrete prisms

  • Hosseinpour, Farid;Abdelnaby, Adel E.
    • Advances in concrete construction
    • /
    • v.3 no.3
    • /
    • pp.161-185
    • /
    • 2015
  • FRP confining is a widely used method for seismic retrofitting of concrete columns. Several studies investigated the stress-strain behavior of FRP confined concrete prisms with square and rectangular sections both experimentally and analytically. In some studies, the monotonic stress-strain behavior of confined concrete was investigated and compressive strength models were developed. To study the reliability of these models, thorough statistical tests are required. This paper aims to investigate the reliability of the presented models using statistical tests including t-test, wilcoxon rank sum test, wilcoxon signed rank test and sign test with a level of significance of 5%. Wilk Shapiro test was also employed to evaluate the normality of the data distribution. The results were compared for different cross section and confinement types. To see the accuracy of the models when there were no significant differences between the results, the coefficient of confidence was used.