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Parametric Inference in an Exponential Distribution

Changsoo Leel), Joongdae Kim?2)

Abstract

Inference for probability P(Y<X) in two-parameter exponential distribution when the
scale parameters are known or not will be considered.

1. Introduction
A two-parameter exponential distribution is given by

f(x;/l,a)=-1—e_("_“)/”, x> u, where o>0, ueR, (1.1)
o

it will be denoted X ~EXP( g, 0).

It is very important for us to consider an exponential distribution in parametric
inferences. Here we shall consider inference for P(Y<X) in two parameter exponential
distribution.

The probability that a Weibull random variable Y is less than another independent
Weibull random variable X was considered(McCool(1991)). Many other authors have
considered the probability P(Y<X), where X and Y are independent random variables.

The problem of estimating and of drawing inferences about, the probability that a random

variable Y is less than an independent random variable X, arises in a reliability.
When Y represents the random value of a stress that a device will be subjected to in
service and X represents the strength that varies from item to item in the population of
devices, then the reliability R, ie. the probability that a randomly selected device functions
successfully, is equal to P(Y{(X). The same problem also arises in the context of
statistical tolerance where represents, say, Y the diameter of a draft and X the diameter
of a bearing that is to be mounted on the shaft. The probability that the bearing fits
without interference is then P(Y<X).

In biometrics, Y represents a patient’s remaining years of life if treated with drug A
and X represents the patient’s remaining years when treated with drug B. If the choice of

drug is left to the patient, person’s deliberations will center on whether P(Y<X) is less
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than or greater than 1/2.

Here, we shall consider inferences on P(Y{X) in two parameter exponential distribution
when the scale parameters are known or not : point and interval estimations, and test a
null hypothesis.

2. Inference on P(X<Y)

Let X and Y be independent two-parameter exponential random variables, X ~EXP

( 4y, 0, ) and Y ~EXP( u,, 0, ), respectively.

Then, P(X<Y) = ffﬂ <y(xfy(y;/1y. 0y) * fxx 51y, 0)dx

e&/ ay,

=1- 1+a./0,°’

where 8= p,— p,. 2.1

where fx(x) and fy(y) are the density functions of X and Y , respectively.
To consider inferences on P(XKY), assume X, X,,-,X,, and Y7, Yy, -, Y, be two
independent random samples from X ~EXP (4,,0,) and Y ~EXP(y,, 0,), respectively.
Then the MLE 3 of ¢ is

9= /Ty" = Yoo—Xa (2.2)

where Xy and Yy are the first order statistics of X;'s and Yj's , respectively.

By the result of Johnson, etal.(1995),

Fact 1. (a) X follows an exponential distribution with a location parameter 4, and a

scale parameter d,/m.

b) If X;,X,,-+, X, are iid exponential distributions with a scale parameter ¢ and a

location parameter g, then 2(X,-—X ) follows a gamma distribution with a shape
&

parameter m— 1 and a scale parameter o.
(c) If a random variable X follows a gamma distribution with a shape parameter a« and a

Ly_La=hk) o v,

cale eter o, then Ei = ,
scale param ( % (28"

From Fact 1(a), we can obtain the expectation and variance of o

o, Oy &
E(B“)=a+—nl—; and Var(3“)=m2+—n%. (2.3)

Let D= Y4y— X (. Then we can obtain the density function of D :
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—-L(d-9
no. ﬁnmo " ' if d=6
=4 "7 s : (2.4)
— 2, if d{6
no,+ma, € o

2-A. When the scale parameters ¢o,=0,= 0, is known

From the result (2.1),

R=PX(V)=1-%e"" s=p—p,

Then the probability depends on & only, Because R is a monotone function in &, inference
on & is equivalent to inference on K. We hereafter confine attention to the parameter ¢
(see McCool(1991)).

When the scale parameters 0, = ¢,= 0; is known, let 7= D—¢. Then from the pdf (2.4) of
D, we have the pdf of T :

__t
m . n ay :
m+n 0o e ’ if £20
D= m, (2.5)
n m o .
PV —00 e, if 0.

Based on a pivotal quantity 7, we shall consider an (1—p,— $,)100% confidence interval

of 4.

bl ﬂt
For a given 0{,<l, there exists an &, such that 1)1=f m:l-n -dﬁea" dt, and
o )
—_ 0 .2
hence b= om %o min (2.6)

where o= fxz 22(Hdt, 22(P) is the pdf of chi-square distribution of df 2.

_n

o t
For another given (0<p,<1, there exists an b, such that p,= j; mﬁ il —: e ”dt and
2 0

hence b2=& X e 2.7

Therefore, (Y, —Xm— b2, Yy—Xy—51) is an (1 —p,—p;)100% confidence interval
of &.

Next We wish to test the null hypothesis Hj: u,= u, against H; : p,Fpu,.
Let @ = {(pgy,u) | 1,.€R, &R} } and 0= (u,, p,).
Then the joint pdf of (X, ", X,., Y1,-+, Y,) is

- 117 -



Parametric Inference in an Exponential Distribution
—-1-(x.--;z,) —-L(y,—#y)
L(0) = fox,y)= ﬂLe ” . H—l—e B , for all x> iy, > py,
=1 0y i=1 0g y

From the likelihood function, we can obtain the MLE’s of g, and g,,

/;;=X(1> and [7;= Y(l).
If p,=p,= u, then the MLE of u is
p=min(Xp Y)=(Yp+Xo— | Yo—Xpl)/2.

From definition of a likelihood ratio test(Rohatgi(1976)), the likelihood ratio test function can
be obtained:

Alx,y) =exp(— | D| (-2%+2—22)+D(2—2—2—’;)) ), where D=Yy—X (.

Therefore, A(x, y){c is equivalent to D<{b, or D> b,. (2.8)
Under Hy: py=p,, ie. 6=0, we hold T=D—3d=D, and hence, for given(<a<{l we
can find &, and.b; of (2.8), through the results (2.6) and (2.7) if p; = p,= a/2.

2-B. When the scale parameters ¢,= 0,= ¢ is unknown

First we wish to know whether two scale parameters are equal or not:

To test the null hypothesis Hy : o0,= o,= ¢ against H, : o,%0,, u4,€R, p,ER
Let @= {ny Oyr #x :#y) I o-x>0; Gy>0’ ﬂxER, /.lyER} and 0=(0xy ny ﬂx; lly)
Then the joint pdf of (X,,", X, Y1,°+, ¥}) is

1 -—al;(x,-—ﬂ,) 1 -—”1;(‘\/.—;@)
L(ﬁ):fa(x,y): ﬂ-o'—e . li—o_e 1} fOl‘ all xi>#x, yi>,uy.
= x 1= y

Differentiating with respect to ¢, and 0,, we can obtain the MLE's
~_ 1 ~_ 1 o~ ~
0,= X, 0y= Y, and ﬂx-—X(l) and Hy= Y(l)-
m = n =

If 0,=0,=o0, then the MLE of ¢ is

=—1 (g(x,.— o)+ Zf‘( Yi— ). 2.9)

n+m

From definition of a likelihood ratio test(Rohatgi(1976)), the likelihood ratio test function can
be obtained :
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A= )m (" = (P Y ()™ ()

2.(Xi— X )
where U=—=

12:1( Yi—Yqu) ‘

Therefore, A(x, ¥)<c is equivalent to U<w; or UD u;. (2.10)

From Fact 1(b) and the results of Rohatgi(1976), we have the followings;

2 2(Xi—X(l)) 2 2( Yi—Yu)

—_ and W= =1 000000
Oy oy,

distribution with df's 2(m-1) and 2(n-1), respectively.
(b) The random variables Z and W are independent.

2()( —Xw)
Under Hj: o,=0,=0, from Fact 2, U=s—F——— follows a F-distribution with
ﬁ;(Y Y)

follows chi-square

[l

Fact 2. (a) zZ

df's 2(m-1) and 2(n-1). And hence, for a given 0<a<{l,

Uy= Fopp(2(m—1),2(n—1)) and w«,=1/F,(2(n—1),2(m—1)) , from (2.10).

If g,=0,=0, then from the result(2.1),
R=P(X<Y)=1-%¢", where 6=p,~p,

Let B=6/0. Then, an estimator of B is defined as:

(m+#n)(Yoy—Xu)

from results (2.2) and (2.9).
tg(Xi_ X+ Z}( Yi—Y)

B=3/05=

From the results (2.3) and Fact 1(c), we can obtain the followings :

_ 3 m?— n’
EB=8+ m+n—3 B+ mn(m+n—23)

(m+ n)2(m*+ n>)
min?(m+n—23)2(m+n—4) "

and Var( %) =
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