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ABSTRACT

The classical theory of statistical calibration assumes that the standard measurement
is exact. From a realistic point of view, however, this assumption needs to be relaxed so
that more meaningful calibration procedures may be developed. This paper presents a model
which explicitly considers errors in both standard and nonstandard measurements. Under
the assumption that replicated observations are available in the calibration experiment, three
estimation techniques {ordinary least squares, grouping least squares, and maximum like-
lihood estimation) combined with two prediction methods (direct and inverse prediction)

are compared in terms of the asymptotic mean square error of prediction.

1. Introduction

The classical linear calibration model for two measurement methods can be represented

as

y=a+LX+te
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where the standard measurement X is assumed to be exact (ie., free of measurement error)
while the nonstandard measurement y is contaminated by random error e. In a calibration
experiment estimates of « and /4 are obtained based upon pairs of (X, v), and in the future
the exact characteristic value(X) of a measurand is predicted based upon nonstandard
measurement(s) of that measurand.

As discussed above, the fundamental assumption in the classical theory of calibration
is that the standard method measures a certain characteristic without error. In many real
world applications, however, one may face the problem of uncertainty not only in the non-
standard but also in the standard measurement. For instance, a routine measurement ins-
trument in a plant is frequently calibrated to a plant working standard which has better
accuracy and precision, but is still subject to measurement error.

Several authors investigated the statistical calibration problem when both standard and
nonstandard measurements are subject to error (e.g., see Mandel(1984), Carroll and Spie-
gelman (1986), Lwin and Spiegelman (1986)). However, they are largely concerned with
the applicability or modification of the ordinary least squares procedure, and comparative
studies on various estimation and prediction methods have received little attention.

This paper presents a predictive functional relationship model which explicitly deals with
errors in both measurements, Assuming replicated observations in the calibration experiment,
ordinary least squares{OLS), grouping least squares(GRLS), and maximum likelihood (ML)
estimation techniques are considered for the estimation of the relationship, and the direct
and inverse approaches are compared in terms of the asymptotic mean square error(AMSE)
of prediction.

2. The Model and Estimators

In the calibration experiment, let X;and Y; be respectively the (unknown) true standard
and nonstandard measurements related as

Yi=a+BX;, i=1,2,-- n (1)

T k]

where » 1s the number of measurands, a certain characteristic of which is of interest, and

a and B are unknown constants. It is assumed that for each measurand, m replicated

measurements are made by the nonstandard and standard instrument. That is,
xip=Xituip | £71,2, 0 0m

(2)

yfj:YI'+vl'j j=1,2"",m
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In (2) random measurement errors u;; and v;; are assumed to be distributed as

(ui">~3w{(o>[ & p”"""ﬂ (3)
Vij 0/ | po,0, o
where ‘BVN’ reads ‘bivariate normal’. We further assume that a,, 0,, and ¢ are unknown,
and error vectors {(u;; v;;)} are independent of each other. Besides, we require »>2 and
m 22 for the identifiability of the unknown parameters(Kendall and Stuart, 1979).

The above formulation of the present calibration problem is obviously more realistic than

the classical one, Another important feature is that the following inverse relationship is also
meaningful due to the symmetric role of X and Y.

Xi=r+dY; (4)

where y=—a /8 and ¢=1/ 8.

The model in Egs. (1) and (2) or (2) and (4) is commonly called an errors-in-variables
mode! (EVM) in the literature, If the true (unobservable) X;(i= 1,...... ,n) are assumed
nonstochastic, thenthe EVM is called a functional model. Otherwise, it is called struc-
tural. In the present investigation a functional model is assumed.

Statistical problemsin EVM have been investigated by many authors with their major
concerns being the behavior of the estimated coefficients of the relationship (1) or{ (4).
For acomprehensive review of EVM one may refer to Madansky (1959), Sprent (1969),
Moran (1971), and Kendall and Stuart(1979). However, their results are not directly ap-
plicable to the present calibration problem since it involves one further step, namely, pre-
diction.

Define

n
S po =20
=

($:;=1)(q:;—7)
Sse=2 (3:~2)(g;:-q)

n m - -
Spa=Z 2 (i) (94;=9:)/ntm—1) )
where § and g represent the grand means of all p; and ¢ respectively. Similarly, p; and
g: are respectively the i-th group means of puand gy j=1....... ,m. Then, the OLS estimators
of 4, a, &, v are respectively given by
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bOLS = Sxy/sxx

GoLs = 3 ~bors *
dOLS = Sxy/Syy
coLs = % ~dorsy

Similarly, the GRLS estimators of 8, a, &, ¥ are respectively given by

bo=Sz5/Szz
ag = ? _bﬁi

do=Sz5/S5

cGg= ; —-d G? .
Finally, the ML estimators of 4, a, 8, y are respectively given by (e.g., see Villegas(1961))

b= (Szy—A*s.y)/ (Szz=2%s,.)

where

A*=the minimum root of | V,—AU,|=0
X =the minimum root of |V,—AU,|=0

. - Szz Szy ] V.o [ S5 Szz
1~ 27
Sz5 S35 | S35 S
U, = Sxx sxyw U, = [ Syy Sxy
B 2~
Sxy Syy Ls,‘y Sxx | .

In the future experiment, suppose that nonstandard measurements y§ are obtained for
a measurand where
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Then, the corresponding X?° is estimated as follows using the above three estimation methods
for the relationships (1) and (4).

X305 = (3%~ aors) /bovs
XBo = (3°-ac)/bg
Xpm = (3°=ay)/by
XY,0s = cos + daus 7° (5)

o _ N
Xl =cgtdey®

Xfm = cm+ dyy®

where y°=r"2]_ y]. X°s with subscripts D and I are called direct and inverse esti-

mators of X° respectively.
In this paper the above six estimators of X° are compared in terms of the asymptotic
mean square error.

3. Asymptotic Mean Square Errors

For simplicity, AMSE's for estimators in (5) are determined when the true values for
ein (3) is 0.

First consider the AMSE of X3os. It is well (e.g. see Yum (1985)) that when # is
fixed and m becomes indefinitely large, bors is asymptotically normally distributed with
asymptotic bias(4BIAS) and variance(4AVAR) as

ABIAS (boys) =—B/(1+7,)
AVAR (bq)=NH{(02/02)/ (147, )+ 8%, (1422) /(1+7,) %)}

where

r,=,>'§l (X; =X)2/ (no?)
N=nm

)_(=n_'i) X;
=

As shown in Appendix, the AMSE of X3 os is given by
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14
~ 2 3 2
AMSE(X[“),OLS) =N—l { (XQ_Y) 2+_w%}{0(1:; Ty) + (1:'3'[2 )}
x X
ol (4702 1 1. (X'-X)?
i e S (N+r)+_—r§
where
2
g=-122 .
[R% ©®
Similary, the AMSE of )?(1),01,5 is given by
00‘3 1 Ty( 1+ TY?) }

AMSE (X3,0) = N1 {(X°=X)2
(Xl’as N {(Xo 07+ r }{0(1+Ty) * (1+Ty)‘

2 2 2 0_ yy2
4 Ou i_"i"_uT(l+l)+L)(_X_2
N (I+zy)%® N »r (1+7y)

where

& -1/ (o)

z./8.

Ty

i

When # is fixed and m becomes indefinitely large, by consistently estimates 8
(Bradley and Gart,1962), and Dolby and Lipton (1972) showed that &y is asymptotically

normal with variance
N Y(a3/03)/ tx+B%/ 14},

Following a similar procedure in Appendix we obtain the AMSE of X8y as follows,

7 2,18 ol 1t
AMSE(Xg’M):N—l{(XO—X)Z_*a;#} {_ +? }+ N +60'?‘(N+:)

Tx X

Similary, the AMSE of X3 is given by

= Ool 1 1 ol 1 1
0 = 1 —Y)? u _— e — u 2¢ - 4
AMSE (X300 =NH{ (X°-X) %+ ~ }{ TY+0ry}+ ~ +0o,,(N+r ).
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Yum(1985) showed that b and by are asymptotically equivalent in the sense that the
asymptotic distributions, biases, and variances of the two estimators are the same when
n is fixed and m—>oo. Therefore, the AMSE’s of X3¢ and X3¢ are indentical to those of
X% m and X0m respectively,

In passing, it is worth noting that = and g have some physical meanings, That is, Tx(Ty)
is the ratio of the dispersion of X(Y) to that of the error in x(y). It is frequently called
the “signal-to-noise ratio”, Further, 1 / /g_ =a, / (oy /| B|) represents the ratio of the stan-
dard deviation of x to that error of y, converted to the units of x. Mandel (1984) called 1 /
/9 the® sensitivity of y with respect to ».”

4. AMSE Comparisons

It can be easily shown that AMSE( X3 os) Y AMSE(X} w). Since tx=gty, AMSE(X3,¢
) =AMSE(X{x) and consequently, AMSE (X3 ¢)= AMSE(X3m)=AMSE(X?'¢)
—AMSE(X? ). '

To compare AMSE(X3m) and AMSE (Xo.s) we solve A\/ISE()?‘[’,M)<AMSE()A(?‘OLS)

to obtain

(Py+Pyfr)P3N+P(1/ N+1/r X P, (7)
where
Pi=(X*-X)?
Pz = 00’,2‘

Py= /et 1/c,+1/0+2c2/(0+7,)% +2
Py= (0+27 )0k

Note that P, P, P, and P, are all nonnegative.

To obtain the numerical results, a set of parameter values are selected. Without loss of
generality, the range of X in the calibration experiment is taken to be [0, 1], and hence,
Ty s restricted in [0, 0.25 /6%]. The values of o, are chosen to be 0.1%, 0.5 %, 1%, 2%,
5%, and 10% of the range of X,and ¢ are set to be 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5,
1, 2, 3,5, 10, and 100. Then, a set of dominance curves as in Figure 1 may be constructed
to determine which estimator is preferred when AMSE is the criterion. In constructing Figure
1 the number of future measurements (7)is set to 1,and its effects will be studied separately.
For given ¢, oy, and ty, if the point for N and ‘/P—l is on the right-hand side of the cor-
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(a) 6=0.03
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Figure 1. Contours of dominance between XB,M and )Z?, os With [X°-X| and N as
coordinates (0,=0.01, =1).
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Figure 1. (continued)
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responding curve, X"’D,M dominates )??ow

Based upon a series of figures generated, we first found that X%,M is generally preferred
to X?,on.s when N is large. This can be also verified algebraically using (7), which can be
rewritten as

P>(rP Py +PyPy+7rPy)/(rP{~P,) for rP,-P,>0 .

If »P,—P,0, then there does not exist positive N which satisfies (7), and therefore,
X9 ous is preferred. Secondly, X, is preferred when /P, =|X °~X| is large. This is clearly
illustrated in Figure 1, and can be also verified using (7). That is, (7) can be rearranged
to

Py >(PyPy + Py(N+7) 1/ (r(N-P3)] for N-P3>o0,

If N(P, XPoLs are preferred for all values of P, . This implies that in general X8m and
XPoLs are preferred in extrapolation and interpolation, respectively. Another finding is that
as g increases, the dominance curves gec more and more shifted towards the left, and
consequently, )?B,M becomes better unless N and /or /P, is very small. Besides, we also
observed from a series of figures generated that XBu becomes preferred as tx decreases.
One exception is that the reverse is true when =100 and ¢,=0.1.

In order to study the effect of r, a series of figures like Figure 2 were constructed with
N and r as coordinates, In general, X8m is preferred for large r when N and ‘/E are small
and ry is large. However, if N and /P, are large, then a relatively small r may still ensure
the dominance of X%,m over XPoLs.

5. Conclusion

For the calibration problem when both measurements are subject to error, a predictive
functional relationship model was proposed. Assuming replicated observations in the calib-
ration experiment, various estimators for the unknown future standard measurement are
compared in terms of the asymptotic mean square error, The major findings are as follows:

1. AMSE of X8ous is always larger than that of X8u.

2. AMSE (X8, ) =AMSE (X8,u) =AMSE (X ) =AMSE (Xy).

3. )A(SM is preferred for large N with. » fixed.

4, XB,M generally performs better in extrapolation while XPo.s is preferred in mterpolat10n

5. As g increases and / or tx decreases, XS,M becomes better,
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Figure 2. Contours of dominance betweenf(%m and XP,ous With r and N as coordinates

(9210 ’ 6u=0-0]).
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Figure 2. (Continued)
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6. When N and /P, are small and 74 is large a relatively large » is needed for the do-
minance of X8,m over XPoLs. Otherwise, a relatively small r suffices.
For AMSE comparisons the following estimates are suggested for the unknown parame-

ters

w)
It
Qv

Z

® N

1

(x ij _‘;;)2/ (N—n )

Q)
1l
—
-,
1l
-

Q)

<
il

(NgE]

l(yij -9:)%/(N-n)

n
-

J

1 (%:i—=%)% (ng?)

N5
B
I
|

.§.= hj-l 55 55 X .

i=1 j=1

The estimate 7 was suggested by Richardson and Wu(1970) as a consistent estimate of
7x. For 3, by may be used since it consistently estimates 8. Further, &% and o2 are pooled
sample variances which are unbiased.

Appendix

Derivation of the AMSE of XB.oLs

After some algebraic manipulation, direct and inverse estimators in (5) can be respecti-

vely reduced to

X3 =X°=(X°-X) (3/b-1)+% —5/b-0"/b
X1 =X =(X*~X)(d/6~1) + & — db + d5°
where & and 4 are either the OLS, GRLS, or ML estimators of 4 and ¢, respectively,
In this appendix, the AMSE of X8,o.s is determined. AMSE’s for the other estimators can

be found in a similar manner.
First, difine a random vector

w= (bos, #, )V

Then, it can be shown that the probability limit of w when » is fixed and m—> is

plimw=we=(B~B/(1+7,),0,0),
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Further, .,/ m (w—w,) is asymptotically normally distributed with zero mean vector and

covariance matrix

T=diag {((s2/02)/ (141 )+ B%r, (1+22)/ (142, )*)/n, o2/n,0d/n}.

Define

I
&%

f(w) ,OLS_XO.

Then,

flwg)= X=X/ 7+ (1+1,)5°/(Br).

Let ¢ be the vector of partial derivatives of f(w) with respect to the elements of w.
Evaluating ¢ at wo yields

9f (w) X°-X) »°
~(1+7,)?
dboLs (147 {(Bri) * (ﬁrx)z}
_ of (w) _
¢0‘ BE = 1
of {w) —(1+7y)
o Bty

Then, using the Anderson theorem (1984, p.121) for given v°, we can show that
/' m{f(w)— f(wo)}is asymptotically normally distributed with mean zero and variance
goTdo

Therefore, the AMSE of X8,0s conditional on 7® is

- — X0—x)1?  2X-X3%U+r,) (39 %(1+¢,)?
AMSE (X3, ous| 7°0) = p + pe? + B

X 2(1+7, 0% 2(X~-X5%(1+7 )% (") 2(1+7 )¢

1 X + X X
+ NI BIcd PR + (ﬁfx)4 }
{ oi/al ﬁ27x(‘1+7:2()} let (1+7,)? o} .
I+7, (147,04 N (Br)t N

Then, taking expectation of AMSE(X8,oLs|7) with respect to 7 yields the unconditional
AMSE as
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AMSE (X3, 00) =N"1{ (XO—X) 2+

?a_,z‘}{ 0(1-:1',()3+ (H;z',z‘)}
r T% Ty

2 2 2 0_7y2
gy (Hry )y 1 1, (XT-XD?
vt NPt

where g is defined in Eq. (6).
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