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ABSTRACT 

A random profile is the result of a process, the output of which is a function instead of a scalar or vector quantity. In 
the nature of these objects, two main dimensions of “functionality” and “randomness” can be recognized. Valuable 
researches have been conducted to present control charts for monitoring such processes in which a regression ap-
proach has been applied by focusing on “randomness” of profiles. Performing other statistical techniques such as hy-
pothesis testing for different parameters, comparing parameters of two populations, ANOVA, DOE, etc. has been 
postponed thus far, because the “functional” nature of profiles is ignored. In this paper, first, some needed theorems 
are proven with an applied approach, so that be understandable for an engineer which is unfamiliar with advanced 
mathematical analysis. Then, as an application of that, a statistical test is designed for mean of continuous random 
profiles. Finally, using experimental operating characteristic curves obtained in computer simulation, it is demonstrat-
ed that the presented tests are properly able to recognize deviations in the null hypothesis. 
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1.  INTRODUCTION 

Since the introduction of statistical quality control 
technique, many developments have been made in this 
field and this technique has been successfully applied in 
broad fields of industries (Subramani and Balamurali, 
2016). Introducing the concept of profile and presenting 
methods to control it are regarded as a milestone for de-
velopment of statistical quality control methods. Before 
introduction of a profile concept, output or property of a 
process has been always considered as a scalar quantity 
or vector quantity (multiple variables), and attempts have 
been made to ensure if the process is under control by its 
observation. But there are some processes in which the 
output, instead of a scalar or vector quantity, is a profile 
or function, which is a relationship between one inde-

pendent variable and one or several dependent variables. 
An example of such processes during an etch step in 
manufacturing semi-conductor proposed by Kang and 
Albin (2000). In this process, a critical device is a mass 
flow controller (MFC) which measures gas pressure. In 
MFC calibration, at first, the numbers shown by MFC 
for different gas pressures are recorded. In each observa-
tion, the result can be considered a near-linear profile, 
which is in fact a relationship between real gas pressure 
and the number shown by MFC. Closeness of the ob-
served profile to y = x line indicates soundness of MFC; 
otherwise, it should be repaired or replaced. Other ex-
amples of the processes with profile output can be found 
in (Mestek et al., 1994; Stover and Brill, 1998). Besides, 
Woodall (2007) considered some processes with profile 
output in lumber manufacturing, monitoring of shapes 
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and public health surveillance. The term profile moni-
toring refers to control of such processes, which is per-
formed during two phases. In phase I, while the process 
is under control, output profiles are recorded, and the 
shape and limits of the ideal output, called, “reference 
profile” are determined. Phase II is related to the time 
during which the system is working. At this time, ob-
serving output of the process and comparing it with 
“reference profile” lead to discussing whether the pro-
cess is under or out of control. Kang and Albin (2000) 
considered output profiles in each observation according 
to a model as: 

 
0 1y A A x ε= + +    (1) 

 
To sample the process, they selected n points, 

1, , ,nx xL  in the operating range, and recorded process 
outputs, 1 , , ,j njy yL  at these points for sample j. They 
assumed that points 1 1( , ), , ( , )j n njx y x yL  were almost 
located on a line. They estimated values of A0,A1 and ε in 
phase I using regression method, and formed exponen-
tially weighted moving average (EWMA) and Range (R) 
charts. In phase II, mean of residuals of each observed 
profile (defined as 0 1 )ij ij je y a a x= − −  is used to investi-
gate whether the process is under control. Kim et al. 
(2003) considered the base model as (1), and converted 
mean into zero by coding variables X to make the esti-
mated least squares of intercepts and slope independent. 
This issue allowed two single-variable EWMA charts to 
be presented for these two parameters. As shown in that 
research and in (Gupta et al., 2006), their application is 
preferred to usage of EWMA and R charts method pre-
sented in (Kang and Albin, 2000), and they particularly 
have a better performance in average run length (ARL). 

Woodall et al. (2004) discussed general issues in 
profile monitoring. Using indicator variables in multiva-
riate regression model,Mahmoud and Woodall (2004) 
presented an F-test based method for phase I. In that 
research, base model (1) is also considered for describ-
ing variability in profiles. Ding et al. (2006) studied non-
linear profiles and investigated its applications in princi-
pal component analysis (PCA). 

Some researchers have considered the concept of 
change point in their studies, which refers to a point at 
which a change is made in one or more model parame-
ters compared with the reference model. For example, 
Zou et al. (2006) presented control charts based on the 
change point when all process parameters were un-
known. A model based on segmented regression tech-
nique is also suggested by Mahmoud et al. (2007) by 
applying the concept of change point. Zou et al. (2007) 
developed multivariate EWMA control charts (MEWMA) 
for multivariate linear profiles. The considered base 
model is as: 

 
j j jY X β ε= +    (2) 

where Yj is an nj dimensional vector, Xj is an nj×p di-
mensional matrix (where nj>p), β is a p dimensional 
vector and sjε  are nj dimensional independent random 
vectors with normal distribution, with mean of zero and 
covariance matrix of σ2I. This model is in fact the ex-
pansion of model (1). Recently, Mahmoud (2008), Jen-
sen et al. (2008) and Noorossana et al. (2010) also pre-
sented different control charts for base model (2). In 
many other studies, nonparametric control charts have 
been also presented for profile monitoring, in which 
base model is: 

 
( ) , 1, , , 1,ij ij ij jy g x i n jε= + = =L L  (3) 

 
where 1 1( , ), , ( , )

j jj j n j n jx y x yL  form jth random sample, 
g is a nonparametric profile and ijε  are independent ran-
dom variables with mean of zero and variance of σ2. 
Base model (3) with these different as sumptionsin which 
g is a nonlinear function and sijε  are normal independ-
ent random variables with mean of zero and variance of 
σ2 has been considered in some researches for present-
ing control charts for nonlinear profiles e.g., (Chicken et 
al., 2009; Vaghefi et al., 2009; Zhang and Albin, 2009). 

Another dimension which has attracted the atten-
tion of researchers in profile monitoring is fixed or vari-
able sampling interval, sampling size and sampling rate 
of profiles. These dimensions have been evaluated in 
different papers, one of which is the method presented 
by Li and Wang (2010); in all of these papers, base mod-
els are not different from what has been mentioned be-
fore. 
Assume the developed base model as follows:  

 
( )j j jY f X ε= +    (4) 

 
where Yj is a n dimensional vector, Xj is a m dimensional 
vector ( m n≥ ), : m nf R R→  is a smooth function and 

sjε  are independent random n  dimensional vectors 
with mean of zero and covariance matrix of n n×Σ . In 
this case, most of the conducted researches have consid-
ered a special state of the developed model (4) and have 
tried to study whether the process is under control by 
presenting control charts in a regression approach. Con-
sidering that outputs of the mentioned processes are ma-
inly continuous profiles, can this model describe space 
of profiles in the best manner? To clarify the problem, 
the MFC investigated by Kang and Albin (2000) can be 
considered again. If it is possible to gradually and con-
tinuously increase gas pressure from lx (minimum value) 
to hx (maximum value) during system calibration and 
concurrently record the numbers shown by the controller 
as gas pressure in a continuous way, one continuous 
profile will be obtained in each sample. Probably, it is 
not possible to record profiles continuously in all appli-
cations; however, it is possible in some. An example of 
such a process can be observed in failure test of K type 
thermocouples of R-400 reactor in production line of 



Bahria and Hadi-Venchehb: Industrial Engineering & Management Systems 
Vol 15, No 4, December 2016, pp.432-445, © 2016 KIIE 434
  

 

linear light polyethylene in petrochemical industries. 
Due to very serious problems and high costs caused by 
failure of these thermocouples, inspectors of mainte-
nance instrumentation section first remove them from 
the mother device as soon as suspecting failure in these 
parts and then put them in an oven (DRUCK limited 
model),which is connected to a distribution control sys-
tem (DCS) (CS-3000 model). Then, the temperature sen-
sed by the thermocouple in DCS is drawn as a graph 
with gradual increase of oven temperature in the operat-
ing range. If the drawn graph has significant deviation 
from y = x line, it will indicate failure of the thermocou-
ple, which should be immediately replaced. 

Now suppose a profile, which can be continuously 
recorded. The question is that should this profile be con-
trolled by applying model (4) with selecting some points 
and assessing the residuals? How many points are desir-
able? If a better result is obtained by increasing these 
points, is there a method for limit state including invol-
vement of all interval points? This question is a motiva-
tion for presenting a base model which is more compati-
ble with continuous nature of profiles; a model in which 
profiles are considered as random functions which slide 
from the beginning to the end of their domain by follow-
ing a random pattern (not some points which have been 
randomly scattered in the plane). 

Considering that statistical tests are basis of differ-
ent quality control methods, the goal of this research is 
to generalize and develop statistical tests of random sca-
lar variables to space of random profiles. In this case, to 
present a method for performing other quality control 
techniques such as acceptance sampling, comparison of 
two populations of profiles, design of experiments, etc. 
can be possible in addition to control charts. 

The rest of this paper is organized as follows. The-
ory of random profiles with a functional approach based 
on their random nature is presented in Section 2.This is 
done by developing concepts of classic statistics and 
probability of scalar random variables to space of pro-
files such that the materials presented for profiles are 
reduced and corresponded to scalar variables by limiting 
profiles to random but constant profiles on the studied 
domain. Since statistical tests are performed by sam-
pling, the concepts required for sampling are presented 
in Section 3, and an estimator is made for them consid-
ering the family of random profiles. Using these instru-
ments, two tests are designed for mean of profiles in 
Section 4 and their similarity to similar tests is shown in 
scalar random variables. In Section 5, performance of 
the presented tests is compared with that of a classic test 
by simulating and obtaining numerical results. Section 6 
concludes the paper. 

2.  THEORY OF RANDOM PROFILES  

In this section, theory of classic statistics and prob-
ability is developed to space of random profiles with a 

functional approach. While presenting the definitions, 
both fundamental dimensions of the nature of these ob-
jects, i.e. functionality and randomness, are considered. 
At the same time, properties of profiles are expressed 
and proved as some theorems and lemmas. Like other 
mathematical fields, this development is done such that 
the presented concepts could be consistent with the cor-
responding cases in space of scalar random variables in 
the case of using constant but random profiles. In fact, 
some needed parts of functional analysis are presented 
and proven with the understandable words for an engi-
neer and not a mathematician. 

 
Definition 1: (Profile random test) It is an experiment 
whose outcome is not specified in advance but its result 
is a profile. 
 
Definition 2: (Random profile) It refers to the outcome 
of a profile random test. Through this paper, random pro-
files are shown in capital letters.  
 
Definition 3: (Observed profile) After performing the 
test, each of the test results is called an observed profile. 
Observed profiles are shown in lower case letters. 
 
Definition 4: (Property of a random profile) If each of 
the achievable profiles in a profile random test has a 
property in common (for example, all are continuous), 
the random profile is said to have that property.  

 
Random profiles can be highly varied in terms of 

specifications (such as being discrete or continuous, sin-
gle variable or multivariate types, etc.). In this paper, 
only continuous single variable random profiles are con-
sidered. More explicitly, assume a profile random test, 
the result of which is a single variable continuous ran-
dom profile belongs to [a, b]: 

 
( ),Y F x a x b= ≤ ≤       (5) 

 
In the rest of this paper, random profile means such pro-
files.  

 
Definition 5: (Algebra of random profiles) If F1 and F2 
are two random profiles on [a, b], F1+F2, F1-F2, F1×F2, 
F1÷F2 are random profiles which are defined as follows 
for each [ , ] :x a b∈  

 
1 2 1 2( )( ) ( ) ( )F F x F x F x+ = +  

1 2 1 2( )( ) ( ) ( )F F x F x F x− = −  

1 2 1 2( )( ) ( ) ( )F F x F x F x× = ×  

1 2 1 2 2( )( ) ( ) ( ), ( ) 0.F F x F x F x F x÷ = ÷ ≠  
 

Definition 6: (Induced random variable) Consider ran-
dom profile (5). For each point like [ , ], ( )a b Fξ ξ∈  will 
be a scalar random variable. This random variable is 
called induced random variable of F at point .ξ  
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Theorem 1. Induced random variables obtained from 
points along a smooth random profile (with continuous 
derivative) cannot be assumed to be independent. 
 
Proof: Assume that F has continuous derivative on (a, 
b). Suppose ( ) 0f c−′ >  while performing a test for recor-
ding an observed profile, f, at a point like ( , ).c a b∈  
Since f has continuance derivative in c, there exist 0δ >   
such that ( ) 0f x′ >  if ( , ),x c c δ∈ +  or equivalently f(x) > 
f(c). Therefore, f(x) has a value which is necessarily 
greater than f(c); i.e. f(x) is not independent from f(c). 
Namely, 

 
( ) ( )( ) ( ) ( ) .P F x F c P F x≠    □  

 
Definition 7: (Independent random profiles) Some ran-
dom profiles defined on interval [a, b] are called inde-
pendent if their resulting induced variables are inde-
pendent at each point of this interval.  
 

It is necessary to note that independence of random 
profiles means independence of behavior of each profile 
from other profiles, not independent behavior of each 
point from other points along a profile (which is violated 
in Theorem 1).  

 
Definition 8: (Expected value (mean) for a random pro-
file) Expected value (mean) of random profile (5) is 
function Fμ (or μ  in case that there is no fear of ambi-
guity) which is defined as follows:  

 
( )( ) ( ) ,x E F x a x bμ = ≤ ≤   (6) 

 
μ  is a nonrandom function which shows the center of 
profile and random profile fluctuates around it. It is nec-
essary to note that μ  may not be defined on [a, b]. For 
example, let F be a random profile from a test, the result 
of which is ( ) 4 (1 ), [0, 1]if x ix x x= − ∈  per natural number 
i with probability of 2

1 .
i

 In this case, induced random 
variable at point x = 0.5 has the probability density func-
tion as 2

1( (0.5) ) , ,
i

P F i i= = ∈N  for which it can be easily 
observed that there is no mean. Therefore, μ  has not 
been defined in x = 0.5. Henceforth, it is assumed that 
the means of discussed random profiles are available at 
all points of [a, b]. In other words, μ  has been defined 
on [a, b].  

 
Lemma 1: μ -if available- is continuous on [a, b].  
 
Proof: Assume that μ  is defined on [a, b] and t is an 
arbitrary point of this interval. From continuity of linear 
operator E and random profile F, it would follow that 

( )( ) ( )( ) ( )x t x t x t
lim (x) lim ( ) lim ( ) ( ) .E F x E F x E F x→ →

→
= = =μ

This means x tlim ( ) ( );x t→ =μ μ  therefore, μ  is continu-
ous on (a, b). Similarly, it can be shown that there is 
right and left continuity in a and b, respectively. □ 

Theorem 2: (Generalizing linear property of expected 
value in space of profiles) 
 

If F1 and F2 are two random profiles in [a, b] with 
means of 

1Fμ  and 
2Fμ  respectively, and g1 and g2 are 

arbitrary nonrandom functions defined in this interval, 
then, 

1 1 2 2 1 21 2 .g F g F F Fg g+ = +μ μ μ  
 

Proof: For each [ , ],x a b∈ F1(x) and F2(x) (induced ran-
dom variables of F1 and F2 at point x) are random varia-
bles and g1(x) and g2(x) are constant values; therefore, 

 
( )1 1 2 2( ) ( ) ( ) ( )E g x F x g x F x+  

( ) ( )1 1 2 2( ) ( ) ( ) ( ) , [ , ]g x E F x g x E F x x a b= + ∀ ∈  
 

can be written based on linear property of expected value 
in space of scalar random variables; hence, 

1 1 2 2 1g F g F g+ =μ   

1 22 .F Fg+μ μ  □ 

 
The above theorem can be easily generalized to  

1 1 11 .
n n ng F g F F n Fg g+ + = + +L Lμ μ μ  The following lemma 

is an immediate result of Theorem 2. 
  

Lemma 2: If f and g are arbitrary nonrandom functions 
defined in interval [a, b] and F is a random profile in 
this interval, then ( ) ( ) .E f F g f E F g⋅ + = ⋅ +  
 
Definition 9: (Error profile) For random profile F, error 
profile is defined as follows: 

 
( ) ( ) ( ), [ , ]F x F x x x a b= − ∀ ∈μe . 

 
It is evident that error profile is a random profile it-

self, the value of which at each point of the domain is 
deviation of random profile from the mean. If there is no 
fear of ambiguity, error profile is shown by .e  Consid-
ering the above definition, ,FF = +μ e  and considering 
that μ  is a nonrandom function, F will be definite in 
case Fe  is available. Therefore, as will be seen, its cor-
responding error profile will be given while discussing a 
random profile with a definite mean. The following the-
orem is a straightforward consequence of lemma 2. 

 
Theorem 3: ( ) .x = 0μe  

 
This theorem shows that error profile is a random 

profile which fluctuates around x-axis. Induced variable 
of Fe  is a scalar random variable which shows measure 
of error (distance of profile from its mean) at each point. 
As shown in Theorem 1, assumption of errors’ indepen-
dence (independence of changes at consecutive points 
along a profile) is violated. As shown in Figure 1, man-
ner of depicting error of points by a continuous profile 
states the doubt that error distribution of points can be a 
bimodal distribution; therefore, assumption of errors’  
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y

 
Figure 1. Depiction manner of points’ error by a continu-

ous profile. 
 

normality does not seem to be axiomatic. This point is 
observed in results obtained from numerical simulation 
given in Section 5. Therefore, assumption of error dis-
tribution normality which has been widely used in the 
conducted researches on profile monitoring (as referred 
to in the first section) may not have the expected gener-
ality.  

Therefore, none of the two assumptions of errors’ 
independence and normality are used in this research. 
However, it is only assumed that they have variance of 

2
eσ  without considering independence of errors and any 

assumption about their distribution; it is known from 
Theorem 3 that they have mean of zero.  

As Fμ  shows center of profile, an index which shows 
dispersion of profiles around this mean is required. In 
the following definitions we introduce this index.  

 
Definition 10: Let g be an integrable function in an in-
terval like I. Norm of g is defined as follows:  

 
( )I I

g g x dx= ∫  

 
Definition 11: (Random dispersion and deviation) For 
random profile (5), the random variables defined by FE  

1
[ , ]Fb a a b−= e  and 

2 21
[ , ]F Fb a a b−=D e  are called random de-

viation and dispersion, respectively. 
 
The above definition shows that random deviation, 

measures resultant random profile deviation from its 
mean along its domain. It is intuitively expected from 
positive and negative deviations to neutralize each other 
and have zero resultant. This will be proved in Theorem 
4. Therefore, random deviation cannot be used as a suit-
able criterion for measuring distance of a random profile 
from its mean. Definition of random dispersion, which 
is a scalar random variable, reveals that this quantity can 
be considered a suitable index for measuring distance of 
random profile from its mean. Because by definition, 

 

( )22 2
[ , ]

1 1 ( ) ( )
b

F F aa b
e F x x dx

b a b a
μ= = −

− − ∫D  

 
and by applying Riemann sum of recent integral, it can 
be written: 

2( )xe
2( )xe

2
FD

( )e x

2
FD

 
Figure 2. 

2
FD  is an index which shows distance of profile 

from its mean. 
 

2
2

1
1 .n

F n i
b a b alim F a i a i

n n n
μ→∞ =

⎛ ⎞− −⎛ ⎞ ⎛ ⎞= + − +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑D  

 
It means that random dispersion is means quared 

distance of profile points from their means along the 
random profile. For this reason, it is used as an index 
which indicates distance of random profile from its mean 
(Figure 2).  

According to the recent term (writing integral as a 
limit sum), it can be seen that deviation and random 
dispersion of random profiles will be also independent 
in the case of their independent. In what follows, some 
properties of deviation and random dispersion and their 
relationship to the norm which is later needed are 
proved. 

 
Theorem 4: ( ) 0FE =E  
 
Proof: By Definitions 9 and 10, we have: 
 

( ) ( )[ , ]
1 1 ( )

b
F F Fa b a

E E E e x dx
b a b a

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠∫E e  

 
According to continuity of F on [a, b] and by Lemma 1, 
μ  is continuous on [a, b]. Therefore, FF = − μe  is con-
tinuous on [a, b]. Hence Riemann sum of recent integral 
can be written as 

 

( )
1

1 1( ) lim
nb

F Fa n i

b aE e x dx E e a i
b a n n→∞ =

⎛ ⎞⎡ ⎤−⎛ ⎞ ⎛ ⎞= +⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠
∑∫    

   1
1 0.n

n Fi
b alim E a i

n n→∞ =

⎡ ⎤⎛ ⎞−⎛ ⎞= + =⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ e  □ 

 
Lemma 3: ( ) ( ) .E F E F=  
 
Proof: 

( ) ( ) ( )( )E F E F E F= + − = + −μ μ μ μ  

( ) ( ) ( ) 0 ( ) .FE E F E E F= + − = + = + =Eμ μ μ μ    □  
 
The following lemma is an immediate application 
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of Lemmas 2 and 3.  
 

Lemma 4: If f is an arbitrary nonrandom function on 
[a, b] and F is a random profile on this interval, then 
( ) ( ) .E f F f E F⋅ = ⋅   

 
Theorem 5: If F and G are two independent random 
profiles defined on [a, b], then E(FG) = E(F)E(G). 
 
Proof: Because F and G are independent, then F(x) and 
G(x) are independent for each [a, b]x∈  by Definition 7. 
Thus, according to the property of expected value for 
independent scalar random variables, we have 

 
( ) ( ) ( )( ) ( ) ( ) ( ) , [a, b]E F x G x E F x E G x x= ∀ ∈  

Thus, ( ) ( ) ( ).E FG E F E G=  □ 
 

Definition 12: (Variance and standard deviation of ran-
dom profile) For random profile (5), variance is defined 
as follows: 

 
( )2 2( )F FVar F E= = Dσ  

 
and square root of variance is called random profile's 
standard deviation; that is, 

2 .F Fσ=σ  
 

Theorem 6: If all induced variables along random pro-
file have common variance of 

2,eσ  then 
2 2.F eσ=σ  

 
Proof.  

( )2 2 2
[a,b]

1
F F FE E e

b a
⎛ ⎞= = ⎜ ⎟−⎝ ⎠

Dσ  

2

1

1lim
n

Fn i

b aE a i
n n→∞ =

⎛ ⎞⎡ ⎤−⎛ ⎞= +⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠
∑ e  

2
1

1lim n
n Fi

b aE e a i
n n→∞ =

⎡ ⎤−⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑  

2 2 2
1

1lim lim .n
n e e ei nn

σ σ σ→∞ = →∞
= = =∑   □ 

 
Theorem 7: (Properties of random profile variance) 
a) For arbitrary scalar a and nonrandom function g and 

random profile F which are defined in an interval: 
2( ) ( ).Var aF g a Var F+ =   

b) ( )2 2( ) .Var F E F= − μ  

 
Proof: 
By Definition 12, we can write: 

a) ( )2( ) ( )Var aF g E aF g E aF g⎛ ⎞+ = + − +⎜ ⎟
⎝ ⎠

 

( )2( )E aF aE F⎛ ⎞= −⎜ ⎟
⎝ ⎠

( )22 2( ) ( ).a E F E F a Var F⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 

b) ( ) ( )22( ) FVar F E E F μ⎛ ⎞= = −⎜ ⎟
⎝ ⎠

D  

    ( )2 2 22E F F= − +μ μ  

( )2 2 2 22 ( ) 2 ( )E F F E F E F μ= − + = − +μ μ μ  

( )2 2 22E F= − +μ μ  

( )2 2 .E F F= −    □  

 
Definition 13: (Covariance of two random profiles) Co-
variance of two random profiles F and G are defined as 
follows: 
 

( )( , ) ( ( .F GCov F G E F G= − − −μ μ  
 

Theorem 8. ( , ) ( ) .F GCov F G F FG= − μ μ  
 
Proof: 

( )( )( )( , ) F GCov F G E F G= − −μ μ  

( )F G F GE FG G F= − − +μ μ μ μ  

( ) ( ) ( )F F F GE FG E G E F= − − +μ μ μ μ  
( ) F GE FG= − μ μ  

( ) .F GE FC= − μ μ   □  
 

Theorem 9: If F and G are two independent random 
profiles, ( , ) 0.Cov F G =  
 
Proof: It is clear from Theorem 8 that ( , )Cov F G =  

( ) ;F GE FG − μ μ  since F and G are assumed to be in-
dependent, then Theorem 5 shows that ( ) F GE FG = μ μ  
and the theorem is proved. □ 

 
Theorem 10: For random profiles 1, , nF FL  and cons-
tant scalars 1, , ,na aL   
 

2

1 1
( ) ( , )

n n

i i i i i j i j
i i i j

Var a F a Var F a a Cov F F
= = <

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑∑  

 
therefore,  
 

2

1 1
( )

n n

i i i i
i i

Var a F a Var F
= =

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  

 
can be given in case of independent random profiles.  

 
Proof: By Definition 12 and 13, we can write: 
 

2

1 1 1
i

n n n

i i i i i F
i i i

Var a F E a F a
= = =

⎛⎛ ⎞ ⎛ ⎞⎜= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜⎜⎝ ⎠ ⎝ ⎠⎝
∑ ∑ ∑ μ  
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( )
2

1
i

n

i i F
i

a F
=

⎞⎛ ⎞ ⎟= −⎜ ⎟⎜ ⎟ ⎟⎟⎝ ⎠ ⎠
∑ μ  

( ) ( )( )22

1
2

i i j

n n

i i F i j i F j F
i i j

E a F a a F F
= <

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟
⎝ ⎠
∑ ∑∑μ μ μ  

( ) ( )( )22

1
2

i i j

n n

i i F i j i F j F
i i j

E a F a a F F
= <

⎛ ⎞
⎜ ⎟= − + − −
⎜ ⎟
⎝ ⎠
∑ ∑∑μ μ μ  

( )22

1
i

n

i i F
i

a E F
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ μ  

( )( )2
i j

n

i j i F j F
i j

a a E F F
<

⎛ ⎞+ − −⎜ ⎟
⎝ ⎠∑∑ μ μ  

( )2
1 ( ) 2 ,n

i i i j i ji i ja Var F a a Cov F F
= <

= +∑ ∑∑     □ 

3.  SAMPLING AND ESTIMATION IN  
PROFILES  

To perform statistical tests, random profiles should 
be sampled. In this section, the related definitions and 
concepts are presented. Then considering a family of 
common profiles, some estimators of parameters are pre-
sented.  

 
Definition 14: (Identically distributed random profiles) 
Random profiles are called identically distributed if they 
have equal mean and their random dispersion is identi-
cally distributed. 
 
Definition 15: (Profile random sample) If 1 2, , , nF F FL  
are independent and identically distributed random pro-
files, they form a profile random sample of infinite po-
pulation, determined by their means and common distri-
bution of random dispersion.  
 
Definition 16: (Profile statistic) A random profile which 
is a function of profile random sample is called a profile 
statistic.  
 
Definition 17: (Mean and variance of profile sample) If 

1 2, , , nF F FL  is a profile random sample, then statistic: 

a) 1
1 n

iiF F
n =

= ∑  is called profile sample mean. 

b) ( )22
1

1 1
1

n
iiS F F

n b a=
= −

− −∑  is called profile sam-

ple variance. 
 
F  estimates center of random profile, while 

2S  is 
an estimation for dispersion amount of profiles around 
this center; and it can be seen intuitively that the center 
of profile can be transferred without changing dispersion; 
also dispersion amount of profile can be changed with-

out changing its center; i.e. 
2
FD  and 

2S  are independent. 
 

Theorem 11: If F  is the mean of profile random sam-
ple with size of n from infinite profile population with a 
mean μ  and a variance 

2,σ  then 
a) ( ) .E F = μ  

b) ( ) 21 .Var F
n

= σ  

 
Proof: 

a) ( ) 1 1 1
1 1 1( )n n n

i ii i iE F E F E F
n n n= = =

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠
∑ ∑ ∑ μ μ  

b) ( ) ( )21 1
1 1n n

i ii iVar F Var F Var F
n n= =

⎛ ⎞= =⎜ ⎟
⎝ ⎠
∑ ∑  

2 2
2 1

1 1 .n
i nn =

= =∑ σ σ    □ 

 
Considering definition of random profile variance, 

2

2
F

F

D
σ

 always has mean of 1. The conducted study shows 

that variance of 
2

2
F

F

D

σ
 depends on shrinkage of random 

profile along its domain. It means that, the higher the 
fluctuation of profile along the domain, the smaller the 
variance for 

2

2
F

F

D

σ
 (Figure 3).  

 
Then, a family of random profiles is considered, for 

which division of random deviation by random profile 

variance 
2

2
F

F

⎛ ⎞
⎜ ⎟
⎝ ⎠

D

σ
 has chi-squared distribution with one de-

gree of freedom. Such profiles have conventional fluc-
tuations in practice. This point will be more analyzed in 
simulation and its numerical results in Section 5. It is 
evident that, if this assumption does not hold in an ap-
plication, the related distribution should be used in the 
future analysis. Considering ( )2 2 2

F F eEσ σ= =D  according 

to Theorem 6, then 

2
2
12 .F

e
χD

�
σ

 On the other hand, accord-

ing to Theorem 11: 
2 2 21 1 ;F eF n n

σ= =σ σ  then 

2 2

2 21
F F

enF

=
D D

σ σ
 

has chi-squared distribution with one degree of freedom.  
 

Theorem 12: 

2

2
( 1)

e

n S
σ
−

 statistic has chi-squared distri-

bution with n-1 degree of freedom.  
 
Proof: With a brief Manipulation, we can write 

 

( ) ( ) ( )( )22

1 1

n n

i i
i i

F F F F
= =

− = − + −∑ ∑μ μ  
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( ) ( )2
1

n

i
i

F F n F
=

= − + −∑ μ  

or equivalently 
2 2 2

1
( 1)

i

n

F F
i

D n S n
=

= − +∑ D  

which implies that 
2 22

2 2 21
1

( 1)i
n

F F

i e e en

n S
σ σ σ=

−
= +∑

D D
 

 
In the recent relation, the right hand side statement 

is the sum of n independent random variable, each of 
which has chi-squared distribution with one degree of 
freedom; therefore, the result has chi-squared distribu-
tion with n degree of freedom. The second statement on 
the left has chi-squared distribution with one degree of 
freedom. Therefore, the first statement on the left has 
chi-squared distribution with n-1 degree of freedom 
according to Cochran’s theorem. □ 

 
Theorem 13: F  is an unbiased estimator for μ  and 

2S  is an unbiased estimator for ( ).Var F   
 
Proof: By part (a) of Theorem 11, it can be seen obvi-
ously that F  is an unbiased estimator for .μ  To prove 
the second part, it can be written that 

( )
2 2

2
2

( 1)
( 1)

e

e

n SE S E
n
σ

σ

⎛ ⎞−
= ⎜ ⎟⎜ ⎟− ⎝ ⎠

 

 

which 

2

2
( 1)

e

n S
σ
−

 has chi-squared distribution with n-1 

degree of freedom on the right side of the recent relation, 
according to Theorem 12. Then, its expected value is 

equal to n-1; therefore, ( )
2

2 2 2( 1) ,
( 1)

e
e FE S n

n
σ σ σ= − = =
−

 

which proves the theorem. □ 

3.1 Error Estimation 

As is known about scalar random variables, 
2

P z zα
⎛ ⎞<⎜ ⎟
⎝ ⎠

 

1 α= −  holds in the case of using X  statistic (mean of 
random sample with size of n from normal population 
with a definite variance of 

2)σ  as mean estimator, con-

sidering that 
/

XZ
n
μ

σ
−

=  statistic has standard normal 

distribution.However, considering 
2

2
2

,1zα αχ
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 and that 

2Z  has chi-squared distribution with one degree of 
freedom, the above term can be written as ( )2 2

,1P Z αχ<  

1 α= −  or ( )2 2
0 ,1, / 1 .P X nαμ χ σ α⎛ ⎞− < = −⎜ ⎟

⎝ ⎠
 It means 

that the maximum of square of estimation error with 
probability of 1 α−  is equal to 

2
,1 / .nαχ σ⋅  Now, con-

sidering the similarity between left side statement of the 

last inequality, i.e. ( )2X μ−  and ( ) ( )22 ,Fb a F− = −D μ  

and considering equal nature of these quantities, both of 
which have sizes for showing distance magnitude of 
mean estimator from real mean, 

2
FD  is considered esti-

mation error resulting from use of F  as an estimation of 
Fμ  value. The following theorem is obtained for the 

maximum error of this estimation. 
 

Theorem 14: If ,F  mean of a profile random sample of 
size n from a profile population (with a known variance 

eσ ), is used as Fμ  estimator, the probability that esti-

mation error is less than 

2
2

,1, e

nα
σχ  is equal to 1 α−   

Proof: Because 

2

2 /
F

e nσ
D

 has chi-squared distribution with 

one degree of freedom, then, 

2
2

,12 1 .
/
F

e
P

n αχ α
σ

⎛ ⎞
⎜ ⎟< = −
⎜ ⎟
⎝ ⎠

D
  

or 

2
2 2

,1, 1 .e
FP

nα
σ

χ α
⎛ ⎞

< = −⎜ ⎟⎜ ⎟
⎝ ⎠

D   □ 

4.  DESIGNING STATISTICAL TEST FOR 
MEAN OF RANDOM PROFILES  

By developing classic statistical test techniques to 
the space of random profiles, in this section the method 
of performing statistical test for mean of profile popula-
tion is presented and their existing similarities are shown. 

As is known, while testing 
0 0

1 0

:
:

H
H

μ μ
μ μ
=⎧

⎨ ≠⎩
 hypothesis at 

significance level of 1 α−  for a scalar population with 
normal distribution and known variance, 

2 ,σ  critical re-
gion of maximum likelihood test is obtained as 

2
z zα>  

considering that 
0

/
XZ

n
μ

σ
−

=  statistic (where X  is mean 

of random sample of size n from the assumed population) 
has standard normal distribution. Therefore, considering 

2

2
2

,1zα αχ
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 and that 
2Z  has chi-squared distribution 

with one degree of freedom, rejection region can be 

written as 
2 2

,1Z αχ>  or ( )2 2 2
0 ,1, / .X nαμ χ σ− >  To gen-

eralize this test to a similar test in space of random pro-
files, in case variance of profile population is known 

2
0 0, 1 ( ) ( )e P Type I error P H is rejected H is trueσ α− = = =
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Figure 3. Variance of 
2

2
F

Fσ
D  decreases with increase of profile fluctuation. 

2
2

,12 /
F

e
P

n αχσ

⎛ ⎞
⎜ ⎟>
⎜ ⎟
⎝ ⎠

D
 can be written considering the point 

that 

2
2

2X
/
F

e

D
nσ

=  statistic has chi-squared distribution with 

one degree of freedom. Therefore, the rejection region 
can be written as 

2 2 2
,1, /eFD nαχ σ>  for performing this 

test. In the case profile population variance is unknown, 
its estimation, i.e. 

2,S  should be used. Because F =  
2

2
2

2 2

2
( 1) /

1

e

F

e

n
n S S n

n

σ

σ

=
−

−

FD

D
 statistic is the result of dividing two 

independent chi-squared variables, each of which is di-
vided by its degree of freedom, it has Fisher distribution 
with 1 and n-1 degrees of freedom. Therefore, critical 
region of the test is obtained as ,1, 1nF fα −>  which is 

converted into 
2 2

,1, 1 /nF f S nα −> ⋅D  after slight algebraic 
manipulation. It can be seen again that the resulting crit-
ical region is similar to the corresponding state of its 
scalar variable because critical region is as 

2 , 1n
T tα −
>  

where .
/

XT
S n

μ−
=   Since 

2
1 1, 1( )n nt f− −=  and 

2

2

, 1n
tα −
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

,1, 1,nfα −  critical region can be written as 
2

,1, 1nT fα −>  or 

equivalently ( )2 2
,1, 1 / ,nX f S nαμ −− > ⋅  and the similari-

ty of these two corresponding states is observable.  

5.  SIMULATION  

In this section, the results obtained from simulation 
are given, which are used to evaluate ability of the pre-
sented tests by drawing operating characteristic (OC) 
curves. In the first step, the random profile with the 
characteristics based on the applied assumption is pre-
sented and those properties which theoretically proved 
are numerically investigated. Here, through some exam-
ples, some functions are selected as mean of random 
profile and by applying deviation for them, ability of the 
test for recognizing these deviations is studied. Accord-
ing to Definition 9, ,FF e= +μ  and μ  is a nonrandom 
function; therefore, F is also obtained in case of having 
error profile of .Fe  As the error profile, the following 
function is considered in interval [2, 4]. 

 
20.2 ( )

1 3 4( ) 0.2 ( ( 10 ) )cos vx r
F x r e cos vx r rπ π π+= + +e  

( cos( 10 )scos vx vx r rπ π× ⋅ + +                     (7) 
where 1r  to 6r  are random numbers with standard nor-
mal distribution and v (fluctuation coefficient) is a con-
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P_value ≈ 0.3P_value ≈ 0.2 

Figure 5. Goodness of fit test confirms chi-squared distribution with one degree of freedom for 
2

2
F

Fσ
D  and 

2

2 .F

Fσ
D

 

stant, with increase of which value of profile fluctuation 
increases as well. In Figure 3, diagram of some of these 
profiles is given for different values of v. Variance of 

2

2
F

Fσ
D

 is also mentioned for each of these values; as men-

tioned previously, it is observed that with increase of 

profile fluctuation rate, variance of 

2

2
F

Fσ
D

 decreases. Si-

mulation has been done long enough, 10,000 replication, 
such that standard deviation of the estimated values is 
less than 5 percent, and model results are reasonable. 
For the simulation, family of the profiles in which v =  
0.4  is considered. Fluctuation rate of this group of pro-
files is observed to be at the conventional level in many 
applications. As shown by the numerical results, the 
assumed properties in Section 3 are also satisfied for 
them. 

Investigating distribution of induced variables of this 
family of random profiles (Figure 4) at different error 
profile points shows that, first, all induced variables 
have mean of zero and equal standard deviation of eσ =  
0.1639  at the points located in the profile domain; there-
fore, assumption of error variance equality is established  
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Figure 4. Goodness of fit test rejects normality of error 

distribution (p-value = 1.1e-16). 
 

Investigating distribution of induced variables of this 
family of random profiles (Figure 4) at different error 
profile points shows that, first, all induced variables 
have mean of zero and equal standard deviation of eσ =  
0.1639  at the points located in the profile domain; there-
fore, assumption of error variance equality is established 
along the profile and, second, this distribution is bimo-
dal and their distribution cannot be considered as ran-
dom variables with normal distribution (small value of 
p-value obtained from chi-square goodness of fit test for 
hypothesis of error distribution normality also confir-
med this issue). 

Considering that the designed tests are performed 
based on this assumption that division of random disper-
sion by random profile variance in the family of consid-
ered profiles has chi-squared distribution with one de-
gree of freedom, this hypothesis is tested for profiles 
and their profile sample means. In Figure 5, distribution 
of these variables is given and the p-value obtained from 
goodness of fit test shows that these variables accepta-
bly followed chi-squared distribution with one degree of 
freedom.  

Figure 6 shows distribution of 

2

2
( 1) .

e

n s
σ
−

 The p_  
 

 
P_value ≈ 0.6 

Figure 6. Goodness of fit test confirms chi-square distri-
bution with n-1 degree of freedom for 

2

2
( 1) .

e

n S

σ

−  



Bahria and Hadi-Venchehb: Industrial Engineering & Management Systems 
Vol 15, No 4, December 2016, pp.432-445, © 2016 KIIE 442
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( )2
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2 ( )ed
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−
=

−
 

Figure 7. In case d1 and d2 are equal, relative errors of the two null hypotheses are considered equal. 
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Figure 8. Comparing OC curves of the tests when intercept increases as much as .eλσ  

value obtained from goodness of fit test confirmed the 
proved fact in Theorem 12 that 

2

2
( 1)

e

n s
σ
−

 has chi-squared 
distribution with n-1 degree of freedom. 

Now, statistical test can be done for profiles using 
some examples while ensuring that the assumption men-
tioned in this research are satisfied for the error profile 
introduced in (7). In the first example, null hypothesis 

0 : ( ) 3 4FH x x= +μ  versus alternative hypothesis 1 : FH μ  
( ) 3 4x x≠ +  in interval [2, 4] is tested when shape of this 
random profile changed with deviation from slope or 
intercept. In case null hypothesis is established, the ran-
dom profile would be as ( ) 3 4 ( ),FF x x x= + + e  where Fe  
( )x  is the error profile given in (7). Because so far no 
similar method has been presented for testing random 
profiles, its ability is compared with a classic test for 
mean of a scalar variable with standard normal distribu-
tion as control test when relative errors (ratio of null 
hypothesis error to variance) are equal. It means that, in 
the case of violating the null hypothesis, 0 0: ,H μ μ=  
and if 1,μ μ=  relative errors of the null hypothesis of 
both tests are considered equal when:  

2
1 0 2

1 02 2

( )1 1
( )e b a

μ μ
μ μ

σ σ

−
= −

−
  (8) 

 
In the first study, intercept increased as much as 

eλσ (mean of random profile is converted into ( )F xμ =  
( )3 4 )e xλσ+ +  and, in the control test, mean increased 
to μ λ=  such that relative error of null hypothesis of 
both tests became equal with concept (8) and compari-
son is possible. Figure 8 shows experimental OC curve 

for two profile tests using 

2
2

2 /
F

e
X

nσ
=

D
 and 

2

2 /
FF

s n
=

D  

statistic along with theoretical OC curve of the control 
test for some sample sizes at significance level of α =  
0.05.  For more accurate experimental OC curves, length 
of simulation is considered to have 1,000 replication. 

Performance of profile tests is very close to that of 
control test and both showed desirable performance.  

The second study is related to increase of slope as 
much as eβσ  (mean of random profile is converted into 

( ) 3 (4 ) ).F ex xβσ= + +μ  To equalize relative error of null 
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Figure 9. Comparing OC curves of the tests when slope increases as much as .eβσ  
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Figure 10. Comparing OC curves of the tests when mean line rotates around its center point as much as .eβσ  

hypothesis with concept (8), 
28
3μ β=  is considered in 

the control test. Figure 9 shows OC curves at signifi-
cance level of 0.05α =  in this case. 

In this state, both profile tests have desirable per-
formance compared with the control test, and their abil-

ity for recognizing deviation in null hypothesis is very 
close to each other’s and also to that of the control test, 
especially for sample sizes of more than 10.  

If the middle point of mean, ( ) 3 4 ,F x x= +μ  is kept 
fixed in the center of interval [2, 4] and the profile is 



Bahria and Hadi-Venchehb: Industrial Engineering & Management Systems 
Vol 15, No 4, December 2016, pp.432-445, © 2016 KIIE 444
  

 

 

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

γ

O
C

n=10

 

 

 
0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

γ

O
C

n=5

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

O
C

n=20

 

 

X2

F
controller

  
0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

γ

O
C

n=15

 

 

 

Figure 11. Comparing OC curves of the tests when phase difference of 2 e
π γ σ  is created in profile’s sinusoidal mean. 

 

rotated around it, the mean will change to ( ) (3F x = −μ  
3 ) (4 ) .e e xβσ βσ+ +  Investigating the ability of the pre-
sented profile test in recognizing this change is the third 
study subject in this section. Using the definition pre-
sented in (8), relative error of null hypothesis of two 
profile and control tests became equal by placing μ =  

/ 3,β  and comparison of their ability is possible by 
OC curves. In Figure 10, some of these curves are given 
for different sizes at significance level of 0.05.α =  

In this case, profile tests showed weaker perfor-
mance than the control test in recognizing small devia-
tions; but, when deviation from null hypothesis incre-
ased, their recognition ability remarkably improved by 
the profile tests and became better than the performance 
of the control test.  

The last problem which is presented here considers 
a process, the output of which is always a sine function 
and a profile test is applied in it for recognizing phase 

difference. It means that, when ( ) ,
2F ex sin x π γ σ⎛ ⎞= +⎜ ⎟

⎝ ⎠
μ  

null hypothesis 0 : ( ) ( )FH x sin x=μ  is tested against al-
ternative hypothesis 1 : ( ) ( ).FH x sin x≠μ  In order to ob-
tain μ  value in the control test so that the resulting OC 
curves which are given in Figure 11 can be comparable, 
definition of equality of relative error of null hypothesis 
in (8) isre-applied as follows: 
 

2
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2 2

1 ( )
22 e

e
sin x sin x dxπμ γ σ

σ
⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∫  

2
1 8 8 (8 ) (8)

28 e e
e

cos sin sinπ γ σ π γ σ
σ

⎛ ⎛ ⎞= − − + −⎜ ⎜ ⎟
⎝ ⎠⎝

 

(4 ) (4) 2 4
2 2e e esin sin sin sinπ πγ σ π γ σ γ σ

⎞⎛ ⎞ ⎛ ⎞− + + + − + ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎠

 

6.  CONCLUSION  

Considering the presence of two elements of func-
tionality and randomness in the nature of profiles, expan-
ding classic statistics and probability concepts to the space 
of random profiles is scientifically valuable. Also this ex-
pansion makes it possible to perform other statistical te-
chniques for random profiles, which have been left free 
thus far. In this paper, this development is done such that 
the presented definitions and theorems became con-
sistent with the corresponding cases in space of scalar 
random variables by limiting profiles with constant but 
ran-dom functions. Then, two tests were presented for 

mean of random profiles using 

2
2

2X
/
F

e nσ
=

D
 and 

2

2 /
FF

nσ
=

D
 sta-tistics as an example of applications re-

sulting from this theory. The first statistic can be only 
used when variance of the profile population is known. 
Because no test has been presented for profiles so far, 
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their performance is compared with that of a classic test 
related to scalar random variables in order to study the 
ability of these tests in recognizing violation of the null 
hypothesis. Results of the performed simulation showed 
that performance of profile test with X2 statistic is very 
close to that of the control test in small sample sizes and 
it also had even better performance than the control test 
for lar-ger sample sizes. Its performance is always better 
than the test performed by F statistic. Generally, both 
tests showed proper performance.  

REFERENCES 

Chicken, E., Pignatiello Jr, J. J., and Simpson, J. R. (2009), 
Statistical process monitoring of nonlinear profiles 
using wavelets, Journal of Quality Technology, 41 
(2), 198-212. 

Ding, Y., Zeng, L., and Zhou, S. (2006), Phase I analy-
sis for monitoring nonlinear profiles in manufactur-
ing processes, Journal of Quality Technology, 38 
(3), 199-216. 

Gupta, S., Montgomery, D. C., and Woodall, W. H. (2006), 
Performance evaluation of two methods for online 
monitoring of linear calibration profiles, Internatio-
nal Journal of Production Research, 44(10), 1927-
1942. 

Jensen, W. A., Birch, J. B., and Woodall, W. H. (2008), 
Monitoring correlation within linear profiles using 
mixed models, Journal of Quality Technology, 40 
(2), 167-183. 

Kang, L. and Albin, S. L. (2000), On-line monitoring 
when the process yields a linear profile, Journal of 
Quality Technology, 32(4), 418-426. 

Kim, K., Mahmoud, M. A., and Woodall, W. H. (2003), 
On the monitoring of linear profiles, Journal of 
Quality Technology, 35(3), 317-328. 

Li, Z. and Wang, Z. (2010), An exponentially weighted 
moving average scheme with variable sampling in-
tervals for monitoring linear profiles, Computers 
and Industrial Engineering, 59(4), 630-637. 

Mahmoud, M. A. (2008), Phase I analysis of multiple 
linear regression profiles, Communications in Sta-
tistics: Simulation and Computation, 37(10), 2106-
2130. 

Mahmoud, M. A., Parker, P. A., Woodall, W. H., and 
Hawkins, D. M. (2007), A change point method for 
linear profile data, Quality and Reliability Engi-
neering International, 23(2), 247-268. 

Mahmoud, M. A. and Woodall, W. H. (2004), Phase I 
analysis of linear profiles with calibration applica-
tions, Technometrics, 46(4), 380-391. 

Mestek, O., Pavlík, J., and Suchánek, M. (1994), Multi-
variate control charts: Control charts for calibration 
curves, Fresenius Journal of Analytical Chemistry, 
350(6), 344-351. 

Noorossana, R., Eyvazian, M., and Vaghefi, A. (2010), 
Phase II monitoring of multivariate simple linear 
profiles, Computers and Industrial Engineering, 58 
(4), 563-570. 

Stover, F. S. and Brill, R. V. (1998), Statistical quality 
control applied to ion chromatography calibrations, 
Journal of Chromatography A, 804(1/2), 37-43. 

Subramani, J. and Balamurali, S. (2016), A Modified 
Single Sampling Plan for the Inspection of Attrib-
ute Quality Characteristics, Industrial Engineering 
and Management Systems, 15(1), 41-48. 

Vaghefi, A., Tajbakhsh, S. D., and Noorossana, R. (2009), 
Phase II monitoring of nonlinear profiles, Commu-
nications in Statistics-Theory and Methods, 38(11), 
1834-1851. 

Woodall, W. H. (2007), Current research on profile mo-
nitoring, Producao, 17(3), 420-425. 

Woodall, W. H., Spitzner, D. J., Montgomery, D. C., and 
Gupta, S. (2004), Using control charts to monitor 
process and product quality profiles, Journal of 
Quality Technology, 36(3), 309-320. 

Zhang, H. and Albin, S. (2009), Detecting outliers in 
complex profiles using a χ2 control chart method, 
IIE Transactions (Institute of Industrial Engineers), 
41(4), 335-345. 

Zou, C., Tsung, F., and Wang, Z. (2007), Monitoring 
general linear profiles using multivariate exponen-
tially weighted moving average schemes, Techno-
metrics, 49(4), 395-408. 

Zou, C., Zhang, Y., and Wang, Z. (2006), A control chart 
based on a change-point model for monitoring linear 
profiles, IIE Transactions (Institute of Industrial 
Engineers), 38(12), 1093-1103. 

 
  

 
 
 
 




