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The Behavior of Several Measures of Burn-In
Reliability When Weak Components are Present

Kuinam J. Kim'* and Thomas J. Boardman?

ABSTRACT

Often, a small proportion of components may be ”weak” because of some
imperfection in the control of the production process or in the design of the
components. The weak components will exhibit an increasing and then
a decreasing hazard function. The remaining components will exhibit the
usual "bathtub” form for the hazard function. The time-to-failure pattern
can be modeled by a two-mixed Weibull distribution. This paper considers
the case when the time-to-failure pattern resembles a modified bathtub curve
where the weak proportion creates an increasing hazard rate (failure rate) to
some time, t. Thereafter the hazard rate follows the usual "bathtub” curve.
The relationship among three common measures of reliability; namely failure
rate (h(t)), mean residual life (m(t)), and conditional reliability (R(z(t))
has not been previously discussed under this modified bathtub curve. Not
surprisingly, knowledge concerning these relationships is important in order
to formulate an effective burn-in procedure. New comparisons are discussed
and new mathematical analyses are performed for the relationship. The
results of mathematical analyses show that the optimal burn-in times for
the three reliability measures are different. Thus, identifying which measure
should be considered for a particular product must be the first step to plan
a burn-in procedure

Keywords: Two-mixed Weibull distribution; Conditional reliability; Failure rate;
Mean residual life; Modified bathtub curve; Optimal Burn-in.

1. INTRODUCTION

n today’s market, early failures of products can seriously impair customer
satisfaction and damage the reputation of a company even though most prod-
ucts carry some type of warranty to protect customers. Customer do not wish
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to spend time dealing with failures even when these are covered by warranties.
Therefore, burn-in is needed to prevent delivering of defective products to cus-
tomers. Burn-in is a screening method to detect and weed out early failures of
products/components. Historically, some industrial products (electronical com-
ponents/systems, mechanical equipments, automobiles, etc.) exhibit a ”bath-
tub” curve for their failure rate functions as shown in Figure 1.1 when the products
have weak parts and strong parts for their life. This curve is called a modified
bathtub curve and is discussed by Jensen and Petersen (1982). The modified
bathtub curve consists of four stages (see Figure 1.1). The first stage has an in-
creasing failure rate (hazard rate) to some time, t(a). Thereafter, the failure rate
follows the traditional ”bathtub”curve with early failure region, useful region,
and wearout region. The early failure region has a decreasing failure rate. This
is often observed in electronic components or systems. The failure rate decreases
and the surviving components are more reliable as weak components fail and
are rejected. In most products, the early failures correspond to a small percent-
age of the population. The useful region has a constant rate in which failures
occur randomly. Many products exhibit this pattern. The wearout region has
an increasing failure rate. Wearout occurs toward the end of product life when
deterioration and weakening effects of accumulated stresses lead to an increasing
failure rate function.

A
very early
failure region
h(®)
early
failure useful region wearout
region M region
0  ta) 1) c)  time t

Figure 1.1: Modified Bathtub Curve; suggested by Jensen and Peterson.
(1982,p.12)
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Burn-in has been used to improve reliability measures such as failure rate(h(t)),
mean residual life(m(t)), or conditional reliability (R(z|t)). Are the optimal burn-
in times for reliability measures same? Chandrasekaran (1977) showed the case
when the optimal burn-in time for mean residual life and failure rate are differ-
ent. Then, Park (1985) examined the effect of burn-in on the mean residual life
and showed that the optimal burn-in times for failure rate and mean residual life
are different for the traditional bathtub curve. For some cases, Guess and Park
(1988) showed that the burn-in times for minimizing failure rate and maximizing
mean residual life are the same. Recently, Guess, Walker, and Gallant (1992) dis-
cussed the optimal burn-in times for the three reliability measures. They showed
by use of examples that the optimal burn-in times for the reliability measures
are not the same. However, the relationship among three reliability measures
has not been previously discussed under the modified bathtub curve. In this pa-
per, the characteristics of these three measures will be examined assuming weak
components are presented. Also, graphical data-analysis will be presented for
studying the relationship between failure rate (h(t)), mean residual life (m(t)),
and conditional reliability (R(z|t)).

Two-mixed Weibull distribution is a good model to describe the failure rate
function of many components or systems if they have weak parts and main parts
for stress. Kao (1959) introduced a two-mixed Weibull distribution to describe
the failure time of electronic tubes. Stitch et al. (1975) found that the failure time
of microcircuits follows a mixed distribution law. Reynolds and Stevens (1978)
also found that a two-mixed Weibull distribution describe the time-to-failure
patterns of electronic components. For electro-mechanical device, Boardman and
Colvert (1978) found that the failure time of oral irrigators follows a two-mixed
Weibull distribution. By focusing our attention on early failure for a component,
interest necessarily narrows to the first three stages in the modified bathtub curve
of Figure 1.1. The two-mixed Weibull distribution can be used to model these
portions of the curve.

2. TWO-MIXED WEIBULL DISTRIBUTION

A two-mixed Weibull distribution is composed of two cumulative density func-
tions (CDF). Let Fi(t) be the CDF of the weak population (small proportion of
susceptible components), F(t) be the CDF of the main population (the rest of
the components), and F () be the total CDF for the entire population. Then,
F(t) is constructed by taking a weighted average of the CDF's for the weak and
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main subpopulations. The weights are the proportions of each type of subpopu-
lation. Thus, if the weak population has p proportion, and the main population
has (1 — p) proportion, then

F(t) =pFi(t) + (1 — p) Fa(t) (2.1)

Typically, Fy(t) has a high early failure rate while F5(¢) has a low early failure
rate that either stays constant or increases very late in life in the equation (2.1).
Assume that fi(t) is the probability density function (pdf) for F;(t) for i = 1, 2.
Then, the failure rate of the two-mixed distribution is expressed as

__ph®)+(1-pf(t)
MO = T RO+ T - p R0 (22)

where A(t) is interpreted as the instantaneous failure rate at time t.

Now, let us consider the two-mixed Weibull distribution with two parameters
for each population. From the equation (2.1), the CDF of the two-mixed Weibull
distribution is as follow:

F@i) = pFi(t)+ (1 -p)F(t)
1 = plexp([-(¢/n)™) ~ (1 = p)(exp[-(t/n2)"]) (2.3)

where
[1 : shape parameter of the weak population,
B2 : shape parameter of the main population
71 : scale parameter of the weak population,
71 : scale parameter of the main population
p : proportion of the weak population

When the shape parameter is less than one, we observe a decreasing failure
rate function. When the shape parameter is equal to one, we get constant failure
rate. When the shape parameter is greater than one, an increasing failure rate
function results. Therefore, the shape parameter determines in which failure
region a product belongs. The scale parameter is also called the characteristic
life; the point at which 63.2% of units will have failed.
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From equations (2.2) and (2.3), the failure density function, reliability func-
tion, and failure rate function can be expressed as follow:

e = p(%) (;%)ﬁl_] exp [—(t/m)m]
+(1-p) (%) (%)52_1 exp [—(t/nz)ﬁ:’]

R(t) = p(exp |~(t/m)*]) + (1) (exp [~ (t/m)"])

D (f,’;) (,,i) exp [—(t/n1)°]
p(exp[—(t/m)P]) + (1 — p) (exp [~ (t/n2)?2])
-9 (%) (niz)ﬁm exp [—(t/m)"]

o (exp [=(t/m)P)) + (- p) (e [~ (2/m) )

The two-mixed Weibull distribution will be used to compare the reliability

measures. We will revisit the model in the example section of this paper.

3. THREE IMPORTMANT RELIABILITY MEASURES

Three reliability measures are usually considered for assessment during burn-
in. These are failure rate((h(t)), mean residual life(m(t)), and conditional relia-
bility (R(z|t)). Failure rate (h(t)) is interpreted as the instantaneous failure rate
at time {. Mean residual life(m(t)) is the average lifetime remaining after burn-in
to time . The conditional reliability determines the probability of survival of any
unit in undertaking a new mission given the unit already survived the burn-in
period to time £. Let X be the random life of a component, sub-system, or system
with (f(¢)) its density. Then, the common definitions are:

mean residual life:

m(t) = /too %—du (3.1)

failure rate:

hty = L8 _ —Lt [ER(t)} (3.2)
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conditional reliability:
T+t
R(z|t) = exp [—/ h(u)du] (3.3)
t

where reliability: R(t)= [ f(u)du=exp [~ [° h(u)du], R(z) > 0 and R(t) > 0.

Traditionally, burn-in is used to maximize the mean residual life of devices.
Since we are interested in finding the burn-in time ¢ at which m(t) attains its
maximum, let us study same properties of m¢ which will be needed later. From
equation (3.1), the first derivative of m(t) is obtained as follows:

m'(t) = [ / Ru)du]

h(t)/t R(”d -1

1 [o.9]
= —ht/ Ru—Rt] 34
R(t)[()t ()~ R(0) 3.4)
To simplify equation (3.4), let
L(#) = h(t) / R(w)du — R(t) (3.5)
t
Then, the first derivative of m(t) can be expressed as follow:
iy L
m/(t) WL(t) (3.6)

Thus, the first derivative of mean residual life depends on the sign of L(t) since
the reliability function is always greater than (or equal to) zero. In other words,
if L(t) > 0, then m'(t) > 0 which implies that mean residual life (m(t)) is
an increasing function. L(t) is a just function defined in equation (3.5). We
introduce the function, L(¢), here to use it for examining the relation between
mean residual life and failure rate under the modified bathtub curve. In equation
(3.5), if t = oo, we have

Lt = 00) = Limysoq [h(t) /t " R(t)du — R(t)] _0 (3.7)
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Let us define the property of L(). From equation (3.5), the first derivative of
L(t) is
, 9 °°
L't) = = [h(t)/ R(u)du — R(t)]
ot +
R / R(u)du + h(t)(~R(8)) + £(£)
tOO
- / R(u)du (3.8)
t

From equation (3.8), we see that the sign of L'(¢) is the same as that of
R'(t). Thus, if A'(t) > 0, then L'(¢) > 0 and so L(t) is an increasing function. If
R'(t) < 0, then L'(t) < 0 and so L(t) is a decreasing function.

In the next section, we will define the relationship between mean residual life
(m(t)) and failure rate (h(t)) under the modified bathtub curve using equations
(3.6), (3.7), and (3.8).

4. M(t) AND h(t) UNDER MODIFIED BATHTUB CURVE

Now, let us compare mean residual life(m(t)) and failure rate(h(t)) for the
modified bathtub curve. Figure 4.1 presents the relationship between m(t) and
h(t). We consider the curve in Figure 1.1 from right to left.

m(t)

ZORS SR

v

0 Ha)  (b) 1(c) time t

Figure 4.1: The Relationship between and under the Modified Bathtub Curve.

Note: If there is not one solution of L({) = 0 in the early failure region, the
maximum m(t) is attained at burn-in time ¢ = 0 and m(¢) is decreasing function.
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o In wearout region (between t(c) and oo in Figure 1.1), the failure rate is

increasing. Thus, A'(t) > 0. This implies that L'(¢) > 0 from equation (3.8)
and so L(t) is also increasing, however, L(t) < 0 where t € [t(c), o0] since
L(o0) by equation (3.7). Then, we have m/(t) < 0 from equation (3.6).
This implies that m(¢) is a decreasing function in wearout region.

In the useful region (between ¢(b) and ¢(c) in Figure 1.1), the failure rate is
constant. This implies that A'(¢). Then, we have L'(t) = 0 from equation
(3.8). Since L'(t) = 0, L(t) where t € [t(b),(c)] is constant but smaller
than 0 because L(t(c)) < 0. Then, we have m/(t) < 0 from equation (3.6).
This implies that m(t) is a decreasing function in the useful region.

In the early failure region (between ¢(a) and ¢(b) in Figure 1.1), the failure
rate is decreasing. Thus, h/(f) < 0 which implies that L'(t) < 0 by equation
(3.8). Then, L(t) where t € [t(a),t(b)] is a decreasing function. Since
L(t(b)) < 0) , it might be possible to have one solution of L(t) = 0 or
L(t):0. -

First, consider the case when L(t) = 0. Then, m'(t) = 0 from equation
(3.6). There is a ¢ satisfying m/(t) = 0 and m"(t) < 0 since m”(t) =
m(t)h'(t) + m'(t)h(¢). Thus, m(t) is quasi-concave in this region and the
relative maximum mean residual life (m(¢)) lies between t(a) and t(b) in
Figure 1.1.

For the second case when L(t) < 0, m/(f) < 0 from equation (3.6). Then,
m(t) is a decreasing function in the early failure region.

In the very early failure region (between 0 and ¢(a) in Figure 1.1), the failure
rate is increasing. Thus, A'(f) > 0. This implies that L'(¢) > 0 and so L(¢)
where ¢ € [0,%(a)] is increasing function. Since L(t(a)) > 0 or L(¢(a)) < 0,
it might be possible to have one solution of L(t) = 0 or L(¢(a)) < 0. Then,
we have two possible cases.

For the first case when L(t) = 0, m/(t) = 0 from equation (3.6), there is a
t satisfying m/(¢) = 0 and m"(¢) > 0 since m"(f) = m(e)Rh'(t) + m'(t)h(t).
Thus, m(t) is quasi-convex in this region. Then, the relative minimum m/(t)
lies between 0 and #(a) .

For the second case, L(t) < 0, m/(t) < 0 from equation (3.6). Then, m(t)
is a decreasing function in the very early failure region.
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From the above results, we conclude that the burn-in times for optimum m(t)
and h(t) are different. As shown in Figure 4.1, the maximum m(t) is attained
at burn-in time between t(a) and ¢(b) (or at burn-in time ¢ = 0) while minimum
failure rate is attained at the time t(b) (or ¢ € [¢(b),t(c)]). The relation between
mean residual life (m(t)) and failure rate (h(t)) is presented in Figure 4.1.

5. . R(z|t) AND h(t) UNDER THE MODIFIED BATHTUB
CURVE

The optimal burn-in times for conditional reliability (R(z|T)) and failure
rate (h(t) ) are different for the modified bathtub curve. If a unit has already
accumulated ¢ hours of burn-in and its reliability for a new mission of z hours
duration is desired, this reliability is a conditional reliability, i.e., conditional to
having surviving the first £ hours to be able to undertake the new mission. The
conditional reliability in equation (3.3) is defined as follow:

Rlzlt) = exp (— /t m+thu)du> — exp (— /t " () du - /O z+th(u)du>
- () (o (L o)

_ (R—itj) (R(z +1) (5.1)

Equation (5.1) implies that the reliability of a new mission of z hours dura-

tion, having already operated successfully for ¢ hours of burn-in is equal to the
probability of surviving of z + ¢ hours of operation divided by the probability
of surviving t hours. Thus, conditional reliability is defined by two reliability
functions, R(t) and R(z + %).

Now, we need to study some property of R(z|t) to find a burn-in time ¢
at which R(z|t) attains its maximum. The first derivative of the conditional
reliability in equation (5.1) is defined as follow:

1 2
R(z]t) = (m) (R(t)R (z +t) — R(z + t)R'())

B (Rtt))z (h(a:l-}- 5 h(lt)> R ()R (z +1) (5.2)

From equation (5.2), we see that the sign of first derivative of the conditional

2
Reliability is the same as the sign of (Hz‘lﬁj - Hlﬂ) since (R—%ﬁ) > 0, Then, we
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have the following results for when the mission time is fixed:

1
a. If (h(a:l+ b h(t)) > 0, R(z|t)is monotone increasing function of ¢
1 1
b. If (h(x i h(t)) < 0, R(z|t)is monotone decreasing function of ¢
1 1
¢.  The optimal R(z|t)is attained at (h(:c i h(t)) =0

From the above results, we see that the conditional reliability (R(z|t) ) is
depend on the failure rate at time ¢ (h(f)) and the failure rate at time = + h
(h(z+1)). If h(t) is less than h(z+1), the conditional reliability (R(z[t) ) function
is decreasing. This implies that no burn-in is necessary to improve the conditional
reliability (R(z|t) ). Under the modified bathtub curve, the conditional reliability
(R(z|t)) varies depending on the mission duration z. However, the optimal burn-
time for failure rate (h(t)) is the time ¢(b) in Figure 1.1. Therefore, the optimal
burn-in times for h(¢) and R(z|t) are different under the modified bathtub curve.

6. M(t) AND R(z|t) UNDER MODIFIED BATHTUB CURVE

Under the modified bathtub curve, the optimal burn-in times for m(¢) and
R(z|t) are also different. Conditional reliability (R(z|{) ) depends on mission
time, say z, the failure rate at time #( h(¢)), and the failure rate at time z +
t(h(z+1t)). On the other hand, mean residual life (m(t)) does not depend on the
mission time x. The mean residual life is only depending on the burn-in time t.
If the mission time z € [0.t(c)] in Figure 1.1, there may exist one solution that
optimal burn-in times for mean residual life and conditional reliability may be the
same. However, the optimal burn-in times for mean residual life and conditional
reliability are not the same for most cases when z € [0.£(c)].

7. AN ILLUSTRATIVE EXAMPLE

Suppose that the time-to-failures for 100 CMOS components are in Table 7.1.
Then, graphical analysis techniques can be applied to the failure data to obtain
estimates of the parameter values.

First, median ranks for the failures in Table 7.1 are calculated using following
equation.

1—0.3

Median Rank = x 100
n+ 0.4
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where 1 = order number and n = 150 .

Table 7.1: Time-To-Failures in Hours for CMOS Components

21.67 41.52 43.02 46.55 61.63 62.73 67.98 70.87 72.17 72.52
75.12 75.72 T6.78 78.44 79.69 81.50 82.34 35.89 87.31 87.87
93.22 93.96 98.12 99.97 102.19 102.45 105.97 108.54 110.55 111.33

117.13 120.18 124.61 133.07 140.97 509.73 655.56 690.85 737.16 753.06

770.26 792.36 793.53 207.18 808.17 £209.69 815.41 832.10 832.21 835.54

838.67 841.25 847.13 247.90 861.95 864.44 869.94 877.15 889.54 907.17

907.83 907.96 919.28 921.46 922.57 938.55 939.41 948.82 955.62 959.12

964.96 967.72 967.96 970.11 084.23 984.51 994.86 996.83 1005.88 1009.37
1014.32 1016.01 1019.67 1026.29 1031.53 1034.74 1037.58 1038.34 1041.07 1041.18

1049.78 1063.44 1063.69 1065.11 1111.81 1114.84 1121.76 1125.69 1150.24 1166.91

Next, using time-to-failures and median ranks, a Weibull probability plot is
prepared in Figure 7.1. Since the time-to-failure pattern follows S-curve, we say
that the components have weak components and main components (for more
detail, see Jensen and Petersen (1982). The advantage of using a Weibull plot
is that we can identify the proportion of weak population approximately just by
looking at the Weibull plot. This is accomplished by determining the flat part of
the curve on Weibull plot. The flat part of the curve indicates the proportion of
weak population. When the curve shows truly flat part, the proportion of weak
population: can be read off on the Weibull ordinate as a percentage.

Applying Jensen and Petersen (1982) method to the Weibull plot in Figure
7.1, we find that the time-to-failure pattern of the data follows two-mixed Weibull
distribution law and estimated parameter values as following:

p=03, B =3.75, A =100, By = 9.5, Az = 1000.

Form the estimated parameter values, we can estimate the reliability mea-
sures. Table 7.2 presents the estimated reliability measures for selected time
steps. The optimal values and corresponding burn-in times for the reliability
measures are determined from the Table 7.2 directly; i.e., find the optimal values
of the reliability measures, then read the corresponding burn-in time from the
first column. These are shown in bold type.
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Figure 7.1: Weibull Probability Plot for the Example

Table 7.2: The Estimated Values of h(t), m(t) and R(z|t) for the Example Prob-
lem (truncated at burn-in time 400hours)

t h(t) R(z = 200}t) | R(z =500[t) | R(z = 900|t) m(t)

0 0 0.6500 0.6491 0.4501 636.23
50 0.0018578667 0.6667 0.6644 0.3607 611.15
100 | 0.0062001531 0.8346 0.8281 0.3070 714.03
150 | 0.0006314794 0.9944 0.9780 0.2028 782.14
200 | 0.0000002058 0.9998 0.9668 0.0843 732.14
250 0.00000007 0.9994 0.9370 0.0229 682.14
300 | 0.0000003413 0.9986 0.8868 0.0035 632.14
350 | 0.0000012656 0.9966 0.8077 0.0002 582.14
400 | 0.0000039376 0.9923 0.6925 0 532.14
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From Table 7.2, the optimal value for the failure rate (h(t) ) is the 0.00000007.
Thus, the corresponding burn-in time is the 250 hours. For the mean residual
life (m(t)), we have the optimum value at burn-in time 150 hours. The optimal
burn-in times for the conditional reliability (R(z|t)) do not coincide since R(z|t)
depend on the new mission time z. R(z = 200|t) has its optimum at burn-in
time 200 hours, R(z = 500|t) has its optimum at burn-in time 150 hours, and
R(z = 900|¢) has its optimum at burn-in time zero. Therefore, optimal burn-in
times for the three reliability measures are different for this case and are different
in all cases where the modified bathtub curve represent the time-to-failures.

The relationship among three reliability measures for this example is displayed
graphically in Figure 7.2.

h(t), m(t), R(x}t)

——e e T2 TV 10O = Rix= 2000) ———*-—— R{x= 500it)

e R X =S0CRT) ——— (L)

Figure 7.2: The Relation among Three Reliability Measures for the Example

At the beginning, the failure rate (h(t)) is increasing up to 100 hours in Figure
7.2. Thereafter the failure rate follows the usual bathtub” curve. Therefore,
the failure rate function of two-mixed Weibull distribution follows a modified
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bathtub curve. The mean residual life is increasing up to 150 hours of burn-
in time. Thereafter, it is decreasing. The conditional reliabilities in Figure 7.2
shows different curves by depending on the mission time z. For R(z = 900|t),
the conditional reliability has a decreasing function from the beginning. For
R(z = 200|t) and R(z = 500|t) , the conditional reliabilities are increasing up to
burn time 350 hours. Then, the conditional reliabilities are decreasing.

From Figure 7.2, we also can see that the optimal burn-in times for three
measures are not the same for the failure rate function that follows the modified
bathtub curve.

8. DISCUSSION

The relationship among three common measures of reliability; namely failure
rate (h(t)), mean residual life (m(t)), and conditional reliability (R(z|t)) has been
discussed and mathematical graphical analyses are performed for the relationship
under the modified bathtub curve. The results of mathematical and graphical
analyses show that the burn-in time that optimizes one reliability measure does
not yield an optimal value for another measure when a failure rate function
follows the modified bathtub curve. Therefore, identifying the right measure for
a particular product should be done as a first step before planning a burn-in
procedure. If the objective is to improve the average life of a product, then the
mean residual life (m(¢)) is the right choice for burn-in. If a manufacturer wants
to minimize the early failures, then the failure rate (A(t)) is the relevant measure.
If the goal is to improve reliability for mission time z (fixed length), then the
conditional reliability (R(z|t) ) is the relevant measure to be considered for the
burn-in procedure.

In practice, it is not unusual to have mixed population (weak population and
main (strong) population) for many electrical or electro-mechanical products for
their life. However, products have different reliability objectives. For example,
failure rate (h(t) ) or conditional reliability (R(z|t)) will be a required objective
for most CMOS components. For the electro-mechanical product such as an
oral irrigator (Boardman and Colvert, 1978), the mean residual life (rn(t)) is the
objective to be maximized. For a process with weak population, we recommend
that the first step of burn-in should be identifying the most appropriate reliability
measure.
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