• Title/Summary/Keyword: static strain

Search Result 805, Processing Time 0.031 seconds

A STRAIN GAUGE ANALYSIS OF IMPLANT-SUPPORTED CANTILEVERED FIXED PROSTHESIS UNDER DISTAL STATIC LOAD

  • Sohn, Byoung-Sup;Heo, Seong-Joo;Chang, Ik-Tae;Koak, Jai-Young;Kim, Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.717-723
    • /
    • 2007
  • Statement of problem. Unreasonable distal cantilevered implant-supported prosthesis can mask functional problems of reconstruction temporarily, but it can cause serious strain and stress around its supported implant and surrounding alveolar bone. Purpose. The purpose of this study was to evaluate strain of implants supporting distal cantilevered fixed prosthesis with two different cantilevered length under distal cantilevered static load. Material and methods. A partially edentulous mandibular test model was fabricated with auto-polymerizing resin (POLYUROCK; Metalor technologies, Stuttgart, Swiss) and artificial denture teeth (Endura; Shofu inc., Kyoto, Japan). Two implants-supported 5-unit screw-retained cantilevered fixed prosthesis was made using standard methods with Type III gold alloy (Harmony C&B55; Ivoclar-vivadent, Liechtenstein, Germany) for superstructure and reinforced hard resin (Tescera; Ivoclar-vivadent, Liechtenstein, Germany) for occlusal material. Two strain gauges (KFG-1-120-C1-11L1M2R; KYOWA electronic instruments, Tokyo, Japan) were then attached to the mesial and the distal surface of each standard abutment with adhesive (M-bond 200; Tokuyama, Tokyo, Japan). Total four strain gauges were attached to test model and connected to dynamic signal conditioning strain amplifier (CTA1000; Curiotech inc., Paju, Korea). The stepped $20{\sim}100$ N in 25 N increments, cantilevered static load 8mm apart (Group I) or 16mm apart (Group II), were applied using digital push-pull gauge (Push-Pull Scale & Digital Force Gauge, Axis inc., Seoul, Korea). Each step was performed ten times and every strain signal was monitored and recorded. Results. In case of Group I, the strain values were surveyed by $80.7{\sim}353.8{\mu}m$ in Ch1, $7.5{\sim}47.9{\mu}m/m$ in Ch2, $45.7{\sim}278.6{\mu}m/m$ in Ch3 and $-212.2{\sim}718.7{\mu}m/m$ in Ch4 depending on increasing cantilevered static load. On the other hand, the strain values of Group II were surveyed by $149.9{\sim}612.8{\mu}m/m$ in Ch1, $26.0{\sim}168.5{\mu}m/m$ in Ch2, $114.3{\sim}632.3{\mu}m/m$ in Ch3, and $-323.2{\sim}-894.7{\mu}m/m$ in Ch4. Conclusion. A comparative statistical analysis using paired sample t-test about Group I Vs Group II under distal cantilevered load shows that there are statistical significant differences for all 4 channels (P<0.05).

Bearing Capacity and Control Method of Driven Piles (기성말뚝의 지지력 거동해석과 시공관리방안)

  • 박영호;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.249-258
    • /
    • 1999
  • Dynamic load and static load tests are performed on steel pipe piles and concrete piles at five construction sites in highway to compare the difference of load bearing mechanisms. At each site, one steel pile is instrumented with electric strain gages and dynamic tests are performed on the pile during installation. Damages of strain gages due to the installation are checked and static test is performed upon the same pile after two or seven days as well. It shows that load transfer from side friction to base resistance behaves somewhat differently according to the results of load-settlement analysis obtained from PDA and static load test. Initial elastic stage of load settlement curves of two load tests is almost similar. But after the yielding point, dynamic resistance of pile behaves more stiffer than static resistance, thus, dynamic load test result might overestimate the real pile capacity compared with static result. Analysis of gage readings shows that unit skin friction increases exponentially with depth. The skin friction is mobilized at the 1∼2m above the pile tip and contributes to the considerable side resistance. Comparison of side and base resistances between the measured value and the calculated value by Meyerhof's bearing capacity equation using SPT N value shows that the calculated base resistance is higher than the measured. Therefore, contribution of side resistance to total capacity shouldn't be ignored or underestimated. Finally, based upon the overall test results, a construction control procedure is suggested.

  • PDF

Application of the Static Photoelastic Experimental Hybrid Method to the Crack Propagation Criterion for Isotropic Materials (등방성체의 균열전파 기준에 정적 광탄성 실험 하이브리드 법 적용)

  • Shin Dong-Chul;Hawong Jai-Sug;Nam Sung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1229-1236
    • /
    • 2004
  • The specimen materials used in this research are isotropic epoxy resins. The static photoelastic experiment was applied to them. And then the specimens used in photoelastic experiment were fractured under static load. The static photoelastic experimental hybrid method was introduced and its validity had been assured. Crack propagation criterion used the stress components, which are considered the higher order terms, obtained from the static photoelastic experimental hybrid method was introduced and it was applied to the minimum strain energy density criterion, the maximum tangential stress criterion and mode mixity. Comparing the actual initial angle of crack propagation with the theoretical initial angle of crack propagation obtained from the above failure criterions, the validities of the above two criterions are assured and the optimal distance (r) from the crack-tip is 0.01mm in order to get the initial angle of crack propagation of isotropic epoxy resin.

A Study on the Crack Propagation Criterion of Orthotropic Material by the Static Photoelastic Experimental Hybrid Method (정적 광탄성 실험 하이브리드법에 의한 직교이방성체의 균열전파 기준에 관한 연구)

  • Shin, Dong-Chul;Hawong, Jai-Sug;Nam, Sung-Su;Kwon, O-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1799-1806
    • /
    • 2004
  • The static photoelastic experiment was applied to orthotropic materials. And then the specimens used in photoelastic experiment were fractured under static load. The static photoelastic experimental hybrid method for orthotropic material was introduced and its validity had been assured. Crack propagation criterion used the stress components, which are considered the higher order terms, obtained from the static photoelastic experimental hybrid method was introduced and it was applied to the minimum strain energy density criterion, the maximum tangential stress criterion and mode mixity. Comparing the actual initial angle of crack propagation with the theoretical initial angle of crack propagation obtained from the above failure criterions, the validities of the above two criterions are assured and the optimal distance (${\gamma}$) from the crack-tip is 0.01mm in order to get the initial angle of crack propagation of orthotropic material(C.F.E.C.).

Micro-scale dependent static stress and strain analyses of thickness-stretching micro plate in sport application

  • Mingjun Xia
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.349-358
    • /
    • 2023
  • Aim of this work is investigating effect of thickness-stretching formulation on the quasi three-dimensional analysis of micro plate based on a thickness-stretched and shear deformable model through principle of virtual work and micro-scale dependent constitutive relations. Governing differential equations are derived in terms of five unknown functions and the analytical solution is derived using Navier's technique. To explore effect of thickness stretching model on the static results, a comparison between the results with and without thickness stretching effect is presented.

Measurement of Static Tooth Fillet Strain and Transmission Error of a Cylindrical Worm Gear (원통형 웜기어의 정적 이뿌리 변형률 및 전달오차 측정)

  • Lee, Dong-Hwan;Cheon, Gill-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1238-1244
    • /
    • 1999
  • Using a cylindrical worm gear under the actual condition of static loading, tooth fillet strains and transmission errors have been measured. The maximum strain occurs on the filet region of the center of the 1st mating tooth. Tooth fillet strain changes most sensitively according to the variations of the center distance and recess side eccentricity than the access side eccentricity. Even the no-backlash worm gear shows the transmission errors.

A new finite element based on the strain approach with transverse shear effect

  • Himeur, Mohammed;Benmarce, Abdelaziz;Guenfoud, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.793-810
    • /
    • 2014
  • This research work deals with the development of a new Triangular finite element for the linear analysis of plate bending with transverse shear effect. It is developed in perspective to building shell elements. The displacements field of the element has been developed by the use of the strain-based approach and it is based on the assumed independent functions for the various components of strain insofar as it is allowed by the compatibility equations. Its formulation uses also concepts related to the fourth fictitious node, the static condensation and analytic integration. It is based on the assumptions of tick plate.s theory (Reissner-Mindlin theory). The element possesses three essential external degrees of freedom at each of the four nodes and satisfies the exact representation of the rigid body modes of displacements. As a result of this approach, a new bending plate finite element (Pep43) which is competitive, robust and efficient.

A load increment method for ductile reinforced concrete (RC) frame structures considering strain hardening effects

  • Gunhan Aksoylu, M.;Girgin, Konuralp
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.231-247
    • /
    • 2011
  • This study introduces a new load increment method for the ductile reinforced concrete (RC) frame structures by including strain-hardening effects. The proposed method is a nonlinear static analysis technique employed for RC frame structures subjected to constant gravity loads and monotonically increasing lateral loads. The material nonlinearity in RC structural elements is considered by adopting plastic hinge concept which is extended by including the strain hardening as well as interaction between bending moment and axial force. Geometric non-linearity, known as second order effect, is implemented to the method as well.

Evaluation of Static Structural Integrity for Composites Wing Structure by Acoustic Emission Technique (음향방출법을 응용한 복합재 날개 구조물의 정적구조 건전성 평가)

  • Jun, Joon-Tak;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.780-788
    • /
    • 2009
  • AE technique was applied to the static structural test of the composite wing structure to evaluate the structural integrity and damage. During the test, strain and displacements measurement technique were used to figure out for static structural strength. AE parameter analysis and source location technique were used to evaluate the internal damage and find out damage source location. Design limit load test, the 1st and 2nd design ultimate load tests and fracture test were performed. Main AE source was detected by an sensor attached on skin near by front lug. Especially, at the 1st design ultimate test, strain and displacements results didn't show internal damage but AE signal presented a phenomenon that the internal damage was formed. At the fracture test, AE activities were very lively, and strain and displacements results showed a tendency that the load path was changed by severe damage. The internal damage initiation load and location were accurately evaluated during the static structural test using AE technique. It is certified from this paper that AE technique is useful technique for evaluation of internal damage at static structural strength test.

A study on strain specification and safety degree of connection joints of steel structural member (강구조부재 연결부의 변형특성 및 안전도에 관한 연구)

  • 김경진;김두환
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.4
    • /
    • pp.5-10
    • /
    • 1986
  • On SWS 41 Plates jointed by the F11T M 20 high strength bolts the study on stress behavior and safety degree until rupture in static tensile tests were performed. By these results, in case of no clamping force stress concentration was extremed for strain of about 10% higher ratio. Elastic strain occurred to change of test specimens depth by the load and plastic strain occurred to local minute sleep after elastic strain. compared shear stress with tension stress from the fracture load it was showned lower values than the maximum shear stress theory and stress strain energy theory.

  • PDF