• Title/Summary/Keyword: static identification method

Search Result 111, Processing Time 0.031 seconds

Development of Optimal Control System for Air Separation Unit

  • Ji, Dae-Hyun;Lee, Sang-Moon;Kim, Sang-Un;Kim, Sun-Jang;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.524-529
    • /
    • 2004
  • In this paper, We described the method which developed the optimal control system for air separation unit to change production rates frequently and rapidly. Control models of the process were developed from actual plant data using subspace identification method which is developed by many researchers in resent years. The model consist of a series connection of linear dynamic block and static nonlinear block (Wiener model). The model is controlled by model based predictive controller. In MPC the input is calculated by on-line optimization of a performance index based on predictions by the model, subject to possible constraints. To calculate the optimal the performance index, conditions are expressed by LMI(Linear Matrix Inequalities).In order to access at the Bailey DCS system, we applied the OPC server and developed the Client program. The OPC sever is a device which can access Bailey DCS system.The Client program is developed based on the Matlab language for easy calculation,data simulation and data logging. Using this program, we can apply the optimal input to the DCS system at real time.

  • PDF

Damage identification of 2D and 3D trusses by using complete and incomplete noisy measurements

  • Rezaiee-Pajand, M.;Kazemiyan, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.149-172
    • /
    • 2014
  • Four algorithms for damage detection of trusses are presented in this paper. These approaches can detect damage by using both complete and incomplete measurements. The suggested methods are based on the minimization of the difference between the measured and analytical static responses of structures. A non-linear constrained optimization problem is established to estimate the severity and location of damage. To reach the responses, the successive quadratic method is used. Based on the objective function, the stiffness matrix of the truss should be estimated and inverted in the optimization procedure. The differences of the proposed techniques are rooted in the strategy utilized for inverting the stiffness matrix of the damaged structure. Additionally, for separating the probable damaged members, a new formulation is proposed. This scheme is employed prior to the outset of the optimization process. Furthermore, a new tactic is presented to select the appropriate load pattern. To investigate the robustness and efficiency of the authors' method, several numerical tests are performed. Moreover, Monte Carlo simulation is carried out to assess the effect of noisy measurements on the estimated parameters.

Vibration based damage identification of concrete arch dams by finite element model updating

  • Turker, Temel;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.209-220
    • /
    • 2014
  • Vibration based damage detection is very popular in the civil engineering area. Especially, special structures like dams, long-span bridges and high-rise buildings, need continues monitoring in terms of mechanical properties of material, static and dynamic behavior. It has been stated in the International Commission on Large Dams that more than half of the large concrete dams were constructed more than 50 years ago and the old dams have subjected to repeating loads such as earthquake, overflow, blast, etc.,. So, some unexpected failures may occur and catastrophic damages may be taken place because of theloss of strength, stiffness and other physical properties of concrete. Therefore, these dams need repairs provided with global damage evaluation in order to preserve structural integrity. The paper aims to show the effectiveness of the model updating method for global damage detection on a laboratory arch dam model. Ambient vibration test is used in order to determine the experimental dynamic characteristics. The initial finite element model is updated according to the experimentally determined natural frequencies and mode shapes. The web thickness is selected as updating parameter in the damage evaluation. It is observed from the study that the damage case is revealed with high accuracy and a good match is attained between the estimated and the real damage cases by model updating method.

Malware Detection with Directed Cyclic Graph and Weight Merging

  • Li, Shanxi;Zhou, Qingguo;Wei, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3258-3273
    • /
    • 2021
  • Malware is a severe threat to the computing system and there's a long history of the battle between malware detection and anti-detection. Most traditional detection methods are based on static analysis with signature matching and dynamic analysis methods that are focused on sensitive behaviors. However, the usual detections have only limited effect when meeting the development of malware, so that the manual update for feature sets is essential. Besides, most of these methods match target samples with the usual feature database, which ignored the characteristics of the sample itself. In this paper, we propose a new malware detection method that could combine the features of a single sample and the general features of malware. Firstly, a structure of Directed Cyclic Graph (DCG) is adopted to extract features from samples. Then the sensitivity of each API call is computed with Markov Chain. Afterward, the graph is merged with the chain to get the final features. Finally, the detectors based on machine learning or deep learning are devised for identification. To evaluate the effect and robustness of our approach, several experiments were adopted. The results showed that the proposed method had a good performance in most tests, and the approach also had stability with the development and growth of malware.

Method Decoder for Low-Cost RFID Tags

  • Juels, Ari
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.47-52
    • /
    • 2008
  • A radio-frequency identification(RFID) tag is a small, inexpensive microchip that emits an identifier in response to a query from a nearby reader. The price of these tags promises to drop to the range of $0.05 per unit in the next several years, offering a viable and powerful replacement for barcodes. The challenge in providing security for low-cost RFID tags is that they are computationally weak devices, unable to perform even basic symmetric-key cryptographic operations. Security researchers often therefore assume that good privacy protection in RFID tags is unattainable. In this paper, we explore a notion of minimalist cryptography suitable for RFID tags. We consider the type of security obtainable in RFID devices with a small amount of rewritable memory, but very limited computing capability. Our aim is to show that standard cryptography is not necessary as a starting point for improving security of very weak RFID devices. Our contribution is threefold: 1. We propose a new formal security model for authentication and privacy in RFID tags. This model takes into account the natural computational limitations and the likely attack scenarios for RFID tags in real-world settings. It represents a useful divergence from standard cryptographic security modeling, and thus a new view of practical formalization of minimal security requirements for low-cost RFID-tag security. 2. We describe protocol that provably achieves the properties of authentication and privacy in RFID tags in our proposed model, and in a good practical sense. Our proposed protocol involves no computationally intensive cryptographic operations, and relatively little storage. 3. Of particular practical interest, we describe some reduced-functionality variants of our protocol. We show, for instance, how static pseudonyms may considerably enhance security against eavesdropping in low-cost RFID tags. Our most basic static-pseudonym proposals require virtually no increase in existing RFID tag resources.

  • PDF

A Study on Malware Identification System Using Static Analysis Based Machine Learning Technique (정적 분석 기반 기계학습 기법을 활용한 악성코드 식별 시스템 연구)

  • Kim, Su-jeong;Ha, Ji-hee;Oh, Soo-hyun;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.775-784
    • /
    • 2019
  • Malware infringement attacks are continuously increasing in various environments such as mobile, IOT, windows and mac due to the emergence of new and variant malware, and signature-based countermeasures have limitations in detection of malware. In addition, analytical performance is deteriorating due to obfuscation, packing, and anti-VM technique. In this paper, we propose a system that can detect malware based on machine learning by using similarity hashing-based pattern detection technique and static analysis after file classification according to packing. This enables more efficient detection because it utilizes both pattern-based detection, which is well-known malware detection, and machine learning-based detection technology, which is advantageous for detecting new and variant malware. The results of this study were obtained by detecting accuracy of 95.79% or more for benign sample files and malware sample files provided by the AI-based malware detection track of the Information Security R&D Data Challenge 2018 competition. In the future, it is expected that it will be possible to build a system that improves detection performance by applying a feature vector and a detection method to the characteristics of a packed file.

Comparison of the fermented property and isolation of acetic-acid bacteria from traditional Korean vinegar (재래 식초에서 초산균의 분리와 발효특성 신속 비교)

  • Baek, Seong Yeol;Park, Hye Young;Lee, Choong Hwan;Yeo, Soo-Hwan
    • Food Science and Preservation
    • /
    • v.21 no.6
    • /
    • pp.903-907
    • /
    • 2014
  • For the selection of a starter for vinegar, six strains of acetic-acid bacteria were isolated from traditional Korean vinegar fermented through the static method. These strains were investigated for their acetic-acid fermentation and identification characteristics. The 16S rRNA sequences of six strains were identified as Acetobacter pasteurianus, A. malorum, Gluconacetobacter entanii, Ga. intermedius, and Ga. xylinus respectively. The overoxidation of acetic acid, acetic-acid and pH tolerances, and acetic-acid production of these strains were investigated. None seemed to have been overoxidized. The Gluconacetobacter genus showed acetic-acid tolerance. Among the acetic-acid bacteria, A. malorum V5-7 exhibited the highest pH tolerance. The Ga. intermedius V11-5 and Ga. xylinus V8-1 strains produced colloids that exopolysaccharides of fiber. The acetic-acid production by isolated acetic-acid bacteria and type strain was a achieved at a shaking culture at $30^{\circ}C$ for 5 days. A. malorum V5-7, A. pasteurianus Gam2, and Ga. intermedius V11-5 exhibited the highest acetic acid production. The study results indicate that appropriate strains of acetic-acid bacteria improved the thraditional Korean vinegar fermented through the static method.

Estimation of Modal Parameters for Plastic Film-Covered Greenhouse Arches (비닐하우스 아치구조의 모달계수 산정)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2010
  • To a series of vibration records obtained from experimental modal testing using a fixed hammer and roving accelerometers for greenhouse arch structures, modal parameters such as natural frequencies, damping ratios and mode shapes are extracted by applying the two most advanced system identification methods in the frequency-domain up to now, so-called PolyMAX and FDD. The former involves both input and output data, while the latter utilizes only the output data. The possibility of determining the static buckling load, detecting damages, etc., for very slender steel-pipe arches by means of a non-destructive testing method based on vibration measurements is primarily investigated. The extracted modal parameters generally correlated well with those obtained using finite element analysis, demonstrating promising results for further on-going research.

Robust Real-time Control of Autonomous Mobile Robot Based on Ultrasonic and Infrared sensors (초음파 및 적외선 센서 기반 자율 이동 로봇의 견실한 실시간 제어)

  • Nguyen, Van-Quyet;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.145-155
    • /
    • 2010
  • This paper presents a new approach to obstacle avoidance for mobile robot in unknown or partially unknown environments. The method combines two navigation subsystems: low level and high level. The low level subsystem takes part in the control of linear, angular velocities using a multivariable PI controller, and the nonlinear position control. The high level subsystem uses ultrasonic and IR sensors to detect the unknown obstacle include static and dynamic obstacle. This approach provides both obstacle avoidance and target-following behaviors and uses only the local information for decision making for the next action. Also, we propose a new algorithm for the identification and solution of the local minima situation during the robot's traversal using the set of fuzzy rules. The system has been successfully demonstrated by simulations and experiments.

A Novel Soft Computing Technique for the Shortcoming of the Polynomial Neural Network

  • Kim, Dongwon;Huh, Sung-Hoe;Seo, Sam-Jun;Park, Gwi-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.189-200
    • /
    • 2004
  • In this paper, we introduce a new soft computing technique that dwells on the ideas of combining fuzzy rules in a fuzzy system with polynomial neural networks (PNN). The PNN is a flexible neural architecture whose structure is developed through the modeling process. Unfortunately, the PNN has a fatal drawback in that it cannot be constructed for nonlinear systems with only a small amount of input variables. To overcome this limitation in the conventional PNN, we employed one of three principal soft computing components such as a fuzzy system. As such, a space of input variables is partitioned into several subspaces by the fuzzy system and these subspaces are utilized as new input variables to the PNN architecture. The proposed soft computing technique is achieved by merging the fuzzy system and the PNN into one unified framework. As a result, we can find a workable synergistic environment and the main characteristics of the two modeling techniques are harmonized. Thus, the proposed method alleviates the problems of PNN while providing superb performance. Identification results of the three-input nonlinear static function and nonlinear system with two inputs will be demonstrated to demonstrate the performance of the proposed approach.