DOI QR코드

DOI QR Code

Estimation of Modal Parameters for Plastic Film-Covered Greenhouse Arches

비닐하우스 아치구조의 모달계수 산정

  • Published : 2010.04.30

Abstract

To a series of vibration records obtained from experimental modal testing using a fixed hammer and roving accelerometers for greenhouse arch structures, modal parameters such as natural frequencies, damping ratios and mode shapes are extracted by applying the two most advanced system identification methods in the frequency-domain up to now, so-called PolyMAX and FDD. The former involves both input and output data, while the latter utilizes only the output data. The possibility of determining the static buckling load, detecting damages, etc., for very slender steel-pipe arches by means of a non-destructive testing method based on vibration measurements is primarily investigated. The extracted modal parameters generally correlated well with those obtained using finite element analysis, demonstrating promising results for further on-going research.

비닐하우스 아치구조에 고정햄머 및 이동가속도계 형식을 취한 충격진동실험을 수행하여 획득한 일련의 진동기록으로 부터 고유진동수, 감쇠율 및 모드형태 등과 같은 모달계수를 추출하기 위하여 최신 고급 주파수영역 시스템판별법인 PolyMAX 및 FDD를 적용하였다. 전자는 입력-출력 데이터 모두를 사용하며, 후자는 출력 데이터 만 을 사용한다. 본 연구의 비닐하우스 강재 파이프 아치와 같이 매우 세장한 구조물에 진동계측 등과 같은 비파괴 실험기법을 적용하여 정적좌굴 하중을 결정할 수 있는 지 여부 및 손상을 감지할 수 있는지 등에 대하여 중점적으로 조사하였다. 대체로 추출한 모달계수는 유한요소해석으로부터 획득한 결과와 좋은 일치를 나타냈으며, 지속적으로 수행 할 후속연구에 가능성을 제시하였다.

Keywords

References

  1. 조순호, “비닐하우스 아치구조의 모달실험,” 지진공학회 논문집, 14(12), 57-65, 2010.
  2. Heylen, W., Lammens, S., and Sas, P., Modal Analysis: Theory and Testing, Dept. of Mech. Engrg., Katholieke Univ. Leuven, Heverlee, Belgium, 1995.
  3. Maia, N., and Silva, J., Theoretical and Experimental Modal analysis, Research Studies Press, Taunton, 1997.
  4. Peeters, B., Van Der Auweraer, H., Guillaume, P., and Leuridan J., “The PolyMAX Frequency-Domain Method: a New Standard for Modal Parameter Estimation,” Shock and Vib., Special Issue dedicated to Prof. Bruno Piombo, 11, 395–409, 2004.
  5. Cauberghe, B., “Applied Frequency-Domain System Identification in the Field of Experimental and Operational Modal Analysis,” PhD thesis, Dept. of Mech. Engrg., Vrije Universiteit Brussel, Brussels, Belgium, 2004.
  6. Brinker, R., Zhang, L., and Anderson, P., “Modal Identification from Ambient Responses Using Frequency Domain Decomposition,” Proc.,18th Int. Modal Analysis Conf., San Antonio, Texas, USA, 2000.
  7. Brinker, R., and Anderson, P., “A Way of Getting Scaled Mode Shapes in Output Only Modal Testing,” Proc., 21st Int. Modal Analysis Conf., Kissimmee, Florida, USA, 2003.
  8. Allemang, J. G., and Brown, D. L., “A Unified Matrix Polynomial Approach to Modal Identification”, J. of Sound and Vib., 211(3), 301-322, 1998. https://doi.org/10.1006/jsvi.1997.1321
  9. Ljung, L., System Identification: Theory for the User, 2nd ed. Upper Saddle River, NJ, USA, Prentice-Hall, 1999.
  10. Guillaume, P., Verboven, P. and Vanlanduit, S., “Frequency-Domain Maximum Likelihood Identification of Modal Parameters with Confidence Intervals,” Proc. of ISMA 23, Int. Conf. on Noise and Vib. Engrg., Leuven, Belgium, 1998.
  11. LMS, “TestXpress Version 3A and TestLab Version 9A, Experimental notes and Manuals,” Belgium, 2008.
  12. Structural Vibration Solutions, “ARTeMIS Extractor: Ambient Response Testing and Modal Identification Software, User’s Manual,” Demark, 2001.
  13. The Mathworks, “Using MATLAB, Version 7.0.4,” Natick, MA, USA, 2005.
  14. ANSYS, “Robust Simulation and Analysis Software, http://www.ansys.com/,” Rel. 11.0, ANSYS Incorporated, USA, 2007.
  15. Brinker, R., Zhang, L., and Anderson, P., “Modal Identification from Ambient Responses Using Frequency Domain Decomposition,” Proc.,18th Int. Modal Analysis Conf., San Antonio, Texas, USA, 2000.
  16. Richardson, M., and Formenti, D. L., “Parameter estimation from frequency response measurements using rational fraction polynomials,” Proc., 1st Int. Modal Analysis Conf., Orlando, Florida, USA, 1982.