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Abstract: In this paper, We described the method which developed the optimal control system for air separation unit

to change production rates frequently and rapidly. Control models of the process were developed from actual plant data

using subspace identification method which is developed by many researchers in resent years. The model consist of a series

connection of linear dynamic block and static nonlinear block (Wiener model). The model is controlled by model based predictive

controller. In MPC the input is calculated by on-line optimization of a performance index based on predictions by the model,

subject to possible constraints. To calculate the optimal the performance index, conditions are expressed by LMI(Linear Matrix

Inequalities).In order to access at the Bailey DCS system, we applied the OPC server and developed the Client program. The

OPC sever is a device which can access Bailey DCS system.The Client program is developed based on the Matlab language for

easy calculation,data simulation and data logging. Using this program, we can apply the optimal input to the DCS system at

real time.
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1. Introduction
Oxygen is essential element in steel making process. The

POSCO has been produced 20000 Nm2/h of Oxygen with

99.6 percent of purity from eight air separation units. Figure

1 shows the block diagram of the air separation plants which

fractionates air into Nitrogen, Oxygen, and Argon using dif-

ferent boiling points of each liquid.

The atmosphere air of 25◦C is compressed to 5.6kg/cm2 with

150◦C by the air compressor. The compressed air is cooled

down to 30◦C by a heat exchanger. The cooled air flows to

the lower distillation column with 5.3kg/cm2 and is sepa-

rated into pure gas nitrogen (99.999%) and liquid air flows

into the upper distillation column at 0.8kg/cm2. The boiling

points of liquid Oxygen and Nitrogen are −183◦C,−195.8◦C
respectively. Therefore, Nitrogen with lower boiling points

is produced at the upper part of the column and the lower

part contains liquid and gas Oxygen. The temperature of the

gas Nitrogen and Oxygen which are produced at the upper

distillation column, are cooled down to 25◦C through heat

exchanger.

The production volume and the purity of Oxygen are con-

trolled by adjusting control valves. Table 1 shows the list of

control valves.

However, the controlling the volume and purity at same time,

is very difficult job due to several reasons. First, it is not easy

to develop precise mathematical model for the whole system.

Besides that, two control goals, volume and purity, are highly

coupled through mass and heat balance in columns.

At the POSCO, the overall demands of Oxygen are fre-

quently changed time to time, so that it makes more difficult

to operate in stable condition which is critical for purity con-

trol. In order to solve these control problem, we will develop

an optimal controller which enables to accommodate rapid

change of Oxygen demand and high degree of purity.

This process model will be developed from actual plant data.

Normally, plant testing would be conducted in manually op-

eration where principles of experimental design could be em-

ployed. Because the identification experiment is carried out

in a closed-loop, an identification algorithm should be used

that can cope with closed-loop data. The basic steps of

indirect closed-loop identification algorithms are presented

in H.H.J.Bloemen[1]. For modelling of nonlinear process, a

Wiener model structure will be used. The model consists of

a series connection of a linear dynamic block and a static

nonlinear block. The model is used within a model-based

predictive control (MPC) framework. The linear dynamic

can either be preceded by static output nonlinearity. In

MPC, the control input is calculated by on-line optimization

of performance index based on model predictions, subject to

possible constraints.

To calculate the optimal the performance index, conditions

are expressed by LMI (Linear matrix inequality). And in or-

der to apply at the Bailey DCS system, We develop the OPC

server and client program. The program will be developed

based on the Matlab language. Using this program, we will

apply the optimized input to the DCS system.
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Fig. 1. Air Separation Unit
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2. Control strategy for air separation unit
In this section, the development of Wiener model using sub-

space model identification and the method of output feed-

back model predictive controller design is described.

2.1. The development of Wiener model using sub-

space model identification

2.1.1 System description

Firstly, In order to develop optimal control system for air

separation unit, we considered Wiener model which is de-

rived from system identification using input and output data.

The Wiener model consist of a linear dynamic block is pre-

ceded and static followed by nonlinear block. Although

Wiener models only represent a small subclass of all nonlin-

ear models, they have appeared useful in modeling several

nonlinear processes encountered in the process industry such

as distillation columns, a heat exchanger and pH neutraliza-

tion processes.

In order to describe the process, the model is described as

wiener model by an nth-order deterministic system. Con-

sider the wiener model represented by:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) (1)

z(k) = h(y(k)) (2)

In which A, B, C are linear part of model, x(k) ∈ Rn is

the state, u(k) ∈ Rmis the control input, y(k) ∈ Rp is the

output of the linear block respectively, h is the nonlinear

mapping from y(k) to z(k) and is the output of the non-

linear block. The numbers of linear block output y(k)and

nonlinear output z(k) equal to p.

The nonlinearity of the Wiener model is transformed into a

polytopic uncertainty description. Assume, without loss of

generality that h1 . . . hp are polynomials. The nonlinearity

can be written as:

z(k) = h(y(k)) = H(y)y(k) = H(k)Cx(k) (3)

where H(y) ∈ Ω = Co{H1, . . . , H2p} (4)

H(k) =
∂h(y)

∂y
, y = h−1(x(c))

in which H(y) is a diagonal matrix because of the special

structure of the nonlinearity. When the operating region for

y(k) is limited the entries of H(y)are bounded by minimum

and maximum values. All the possible combinations of the

maximum and minimum values of the element of H(y) are

used to generate 2p vertices {H1, . . . , H2p}of the polytopic

description Ω which contains the nonlinear matrix H(y).

(Co refers to the convex hull).

2.1.2 The modelling of air separation unit

To log data for obtaining the mathematical model such as

(1), (2), we connected Bailey DCS system to lap-top com-

puter which is installed OPC sever program. After that, a

closed loop identification experiment was performed in which

products of O2 and N2 was changed from 24000(Nm2/h) to

20000(Nm2/h) manually. The sampling time was 1 min, 600

samples of data was collected in this experiment.(Bloemen

et al.2001 [1])

Using experiment data,we can obtain linear models at each

operating points by using subspace model identification al-

gorithm and then polynomial functions are obtained by the

nonlinear function algorithm. We implemented a program

to calculate model parameters with above algorithm using

matlab language.

1. Experiment Design
 Input signal design
 Choice of the sampling rate
 experiment duration

4. Calculate Model

3. Model Class, Structure Determination
 State space model

2. Data Pre-processing
 Detrending
 Data filtering
 Decimation

5. Validation�� �����
Fig. 2. Modelling diagram

Table 1. Control valves

HIC-528 Air flow control valve

HIC-984 Cold air flow control valve

HIC-030 Pure N2 recycle flow control valve

HIC-031 Rough N2 recycle flow control valve

FIC-061 O2 product control valve

FIC-070 N2 product control valve

FIC-155 Rough Ar flow control valve

FIC-156 Rough Ar product control valve

LIC-024 Liquid O2 level control valve

Table 2. Output sensor

FIC-061PV O2 product sensor

FIC-070PV N2 product

AI-100 O2 purity sensor

AI-102 N2 purity sensor

2.2. Output feedback model predictive controller de-

sign

2.2.1 Problem statement

Model predictive control (MPC) scheme is very useful tech-

nique to handle time varying systems,input constraints and

tracking problems.Kothare et al.(1996 [4]) presented a state
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feedback MPC algorithm for time varying uncertain sys-

tem with input constraint using Linear matrix inequality

(LMI).With this model predictive control strategy, we will

design an output feedback model predictive tracking con-

troller which stabilized the system (1) and made outputs

follow given command signals.

The controller structure is as follows:

xc(k + 1) = Acxc(k) + Bczc(k)

u(k) = Ccxc(k) (5)

where Ac, Bc, Cc are design variables, And we consider the

following performance index:

J(k, k + N) =

k+N−1∑
i=0

[x(i)T Qx(i) + u(i)T Ru(i)]

+x(k + N)T P (k + N)x(k + N) (6)

where Q and R is positive definite diagonal weighting matrix.

For our purposes, the above performance index is minimized

at the time k. And we consider on integral action form be-

cause it provides a zero-offset for constant command signals.

Define control increment

δu(k) = u(k + 1)− u(k)

δy(k) = y(k + 1)− y(k) (7)

We replace u(k) with δu(k) and we transform the model (1)

and performance index (3) into the following structure.

xe(k + 1) = Ae(k)xe(k) + Be(k)ze(k)

z(k) = Cexe(k) (8)

where

Ae(k) =

(
I H(k)CA

0 A

)
, Be(k) =

(
H(k)CB

B

)

Ce(k) =
(

I 0
)

, xe(k) =

(
z(k)

δx(k)

)
(9)

To easily solve the tracking problem, we can define as fol-

lowing controller structure:

xc(k + 1) = Acxc(k) + Bc(zc(k)− zr(k))

δu(k) = Ccxc(k) (10)

The basic concept of this Wiener MPC algorithm is pre-

sented in (Norquay et al.1998 [2])and consists of inverting

the output nonlinearity, thus removing it from the control

problem.

2.2.2 Controller design

In order to design dynamic output feedback model predictive

tracking control law, we considered as following structure:

x̄(k + 1) = Ā(k)x̄(k) + B̄(k)z̄(k)

δu(k) = K ¯x(k)

z(k) = C̄(k)x̄(k) (11)

where

Ā(k) =

(
Ae(k) 0

BcC
e(k) Ac

)
, B̄(k) =

(
Be(k)

0

)

C̄(k) =
(

Ce(k) 0
)

, x̄(k) =

(
xe(k)

xc(k)

)

K =
(

0 Cc

)
(12)

And we can consider the performance index as following

structure:

Ĵ(k, k + N) =

k+N−1∑
i=0

[x̄(i)T Q̄x̄(i) + δu(i)T Rδu(i)]

+x̄(k + N)T P̄ (k + N)x̄(k + N)

where Q̄(i) =

(
CeT QCe 0

0 0

)

Q̄ ≥ 0, R > 0, δu(i) = Kx̄(i) (13)

To design controller which minimizes the upper bound of the

performance index, We toke as following formula from the

paper of Kothare[4]:

Ĵ(k, k + N)− x̄(k)T P̄ (k)x̄(k) < 0 (14)

Consequently, As following inequality is obtained:

(Ā(k) + B̄(k)K)T P̄ (Ā(k) + B̄(k)K)− P̄ + Q̄ + KT RK < 0 (15)

LMI condition derived from Inequality(14) by Schur’s com-

plement.




T T P̄ T T T (Ā(k) + B̄(k)K)P̄ T 0 0

∗ T T P̄ T T T P̄KT R1/2 T T P̄Q1/2

∗ ∗ γI 0

∗ ∗ ∗ γI




> 0 (16)

where

P̄ = γP̄−1, P̄ =

(
X X

∗ X̄

)
, P̄−1 =

(
Y V

∗ Ȳ

)

T =

(
Y I

V T 0

)
(17)

To solve the LMI(15) condition, we can transform LMI(15)

into LMI(17) by replacing Ac, Bc, Cc, X, Y, U, V of proper

matrix. (E.Granado[3])




Y I Y A + FC Z 0 0

∗ X A AX + BL 0 0

∗ ∗ Y I 0 Q1/2

∗ ∗ ∗ X LT R1/2 XQ1/2

∗ ∗ ∗ ∗ γI 0

∗ ∗ ∗ ∗ ∗ γI




> 0

(18)
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where

F = V Bc, L = CcU
T , Z = Y AX + FCX + Y BL + V AcU

T (19)

If we choose a proper P̄ to satisfy the LMI condition(17),we

performance index is satisfied as following formula.

V (x̄(k/k)) = x̄(k)T P̄ x̄(k), P̄ > 0 (20)

If the cost function(12) is well defined, we can state that

V (∞/k) = 0 because V (x̄(∞/k)) = 0. In view of this,we

impose a bound on the cost function J∞(k) by the following

design requirement:

Ĵ∞(k) ≤ V (x̄(k/k)) = x̄(k)T P̄ x̄(k) < γ (21)

We can transform Inequality (20) into LMI (21) using Schur’s

complement. Derived LMI(20)is as following structure.



T T P̄ T I Y x(k/k)

∗ X x(k/k)

∗ ∗ I


 > 0 (22)

In practical process, We can add as following conditions be-

cause input and output have constraints.

‖ u(k + i|k) ‖2≤ umax i ≥ 0

‖ y(k + i|k) ‖2≤ ymax i ≥ 0 (23)

We can transform Inequality (22) into LMI (23), LMI (24)

using Cauchy-Schwartz inequality and Schur’s complement.



Y I 0

∗ x LT

∗ ∗ u2
maxI


 > 0 (24)




Y I (CAT )

∗ x (CAX + CBL)T

∗ ∗ y2
maxI


 > 0 (25)

Therefore, We can obtain P̄ such that the following opti-

mization problem is solvable:

min γ

Subject to



T T P̄ T I Y x(k/k)

∗ X x(k/k)

∗ ∗ I


 > 0




Y I Y A + FC Z 0 0

∗ X A AX + BL 0 0

∗ ∗ Y I 0 Q1/2

∗ ∗ ∗ X LT R1/2 XQ1/2

∗ ∗ ∗ ∗ γI 0

∗ ∗ ∗ ∗ ∗ γI




> 0




Y I 0

∗ x LT

∗ ∗ u2
maxI


 > 0




Y I (CAT )

∗ x (CAX + CBL)T

∗ ∗ y2
maxI


 > 0

(25)

If we can solve above optimization problem (25), the value

of variable X, Y, L, F, Z will be obtain.Therefore, We consist

of as following method:

V = (I − Y X)(UT )−1

Ac = V −1Z(UT )−1

Bc = V −1F

Cc = L(UT )−1 (26)

2.3. Implementation of the model predictive con-

troller

At the air separation factory of the Pohang iron and steel

company, Bailey DCS system has been used to control each

valves. In order to apply our proposed control algorithm to

the DCS system, we have to access the DCS network using

OPC server and Client program. Because our proposed algo-

rithm is casted by LMI at every sampling time, the program

is developed based on the Matlab language. Using this pro-

gram, we can apply the optimized input to the DCS system.

This client program is as following structure.

This client program have a lot of functions such as real time
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Fig. 3. The structure of client program

simulation, saving data in file and data displaying and so

on.Client program can’t only access to OPC server but also

automatically can write the control input casted by Matlab

to the DCS system.

3. Simulation result
We maintained the purity of Oxygen more than 99.6 percent

and production of Oxygen was changed from 20000 Nm2/h

to 25000 Nm2/h at the basis of 99.8 percent for purity in our

lab experiment such as fig.4, fig.5, fig.6. In order to maintain

the impurity of 1PPM, We can change from 18000Nm2/h to

23000Nm2/h at the basis of 0.5PPM for impurity of Nitro-

gen.

As result, We can maintain the purity of Oxygen more than

99.6percent and the impurity of Nitrogen less than 1PPM.

Ramping time decrease from 40 min to 20 min (fig.4) when

we increase the production and from 20 min to 15min (fig.5)

when we decrease the production. Moreover, control input

maintain from -50 percent to 50 percent such as fig.6.
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Fig. 4. The production and purity of Oxygen

Fig. 5. The production and purity of Nitrogen

Fig. 6. Control input

Fig. 7. Air flow control valve( HIC-528 )

Fig. 8. Rough N2 recycle flow control valve( HIC-031 )

Fig. 9. Pure N2 recycle flow control valve( HIC-030 )

Fig. 10. N2 product control valve( HIC-070 )
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Fig. 11. O2 product control valve (HIC-061 )

Fig. 12. Practical production and purity of Oxygen

In practical experiment, we logged data for two days and

determine Wiener model parameter using the data. We cho-

sen five number of control inputs for risk of practical ex-

periment such as fig.7, fig.8, fig.9, fig.10, fig.11 and we only

experimented for production and purity of Oxygen except

production and purity of Oxygen. In fig.7, fig.8, fig.9, fig.10,

fig.11, we can observe the result of control input.In this fig-

ure, as we decrease the production of Oxygen, control input

also decrease. This means that we have to more open con-

trol valves. In fig.12, we can observe practical variation of

production and purity of Oxygen.

4. Conclusion
We made on experiment with NO.6 plant using OPC server

and client. We logged 1 data per 1 second and model is

obtained by the data using system identification. We used

system identification method as subspace model identifica-

tion and model is considered by Wiener model. As a result,

Precision of oxygen production showed more than 98 per-

cent and purity showed more than 80 percent.Using Wiener

model, we obtained output feedback MPC controller and we

applied it to the plant in practice. Consequently, Air sepa-

ration unit is controlled by five number of control input so

we could decrease ramping time. In order to more decrease

ramping time, We obtained the result that are haven to in-

stall faster moving valves than current valves.

We also developed Client program to apply control input to

be casted by matlab. The client program is easy to manager

plant because it is composed of GUI. In practical experi-

ment, We used 1 data per 1 second for 1 week using this

client program and we monitored all experiment process us-

ing function of display. Prospectively, we should add to the

function to warn the accident in this client.
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