• Title/Summary/Keyword: static divergence

Search Result 27, Processing Time 0.023 seconds

EINSTEIN-TYPE MANIFOLDS WITH COMPLETE DIVERGENCE OF WEYL AND RIEMANN TENSOR

  • Hwang, Seungsu;Yun, Gabjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1167-1176
    • /
    • 2022
  • In this paper, we study Einstein-type manifolds generalizing static spaces and V-static spaces. We prove that if an Einstein-type manifold has non-positive complete divergence of its Weyl tensor and non-negative complete divergence of Bach tensor, then M has harmonic Weyl curvature. Also similar results on an Einstein-type manifold with complete divergence of Riemann tensor are proved.

Quasi-steady three-degrees-of-freedom aerodynamic model of inclined/yawed prisms: Formulation and instability for galloping and static divergence

  • Cristoforo Demartino;Zhen Sun;Giulia Matteoni;Christos T. Georgakis
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.57-78
    • /
    • 2023
  • In this study, a generalized three-degree-of-freedom (3-DoF) analytical model is formulated to predict linear aerodynamic instabilities of a prism under quasi-steady (QS) conditions. The prism is assumed to possess a generic cross-section exposed to turbulent wind flow. The 3-DoFs encompass two orthogonal horizontal directions and rotation about the prism body axis. Inertial coupling is considered to account for the non-coincidence of the mass center and the rotation center. The aerodynamic force coefficients-drag, lift, and moment-depend on the Reynolds number based on relative flow velocity, angle of attack, and the angle between the wind and the cable. Aerodynamic forces are linearized with respect to the static equilibrium configuration and mean wind velocity. Routh-Hurwitz and Liénard and Chipart criteria are used in the eigenvalue problem, yielding an analytical solution for instabilities in galloping and static divergence types. Additionally, the minimum structural damping and stiffness required to prevent these instabilities are numerically determined. The proposed 3-DoF instability model is subsequently applied to a conductor with ice accretion and a full-scale dry inclined cable. In comparison to existing models, the developed model demonstrates superior prediction accuracy for unstable regions compared with results in wind tunnel tests.

Aeroelastic Behaviour of Aerospace Structural Elements with Follower Force: A Review

  • Datta, P.K.;Biswas, S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.134-148
    • /
    • 2011
  • In general, forces acting on aerospace structures can be divided into two categories-a) conservative forces and b) nonconservative forces. Aeroelastic effects occur due to highly flexible nature of the structure, coupled with the unsteady aerodynamic forces, causing unbounded static deflection (divergence) and dynamic oscillations (flutter). Flexible wing panels subjected to jet thrust and missile type of structures under end rocket thrust are nonconservative systems. Here the structural elements are subjected to follower kind of forces; as the end thrust follow the deformed shape of the flexible structure. When a structure is under a constant follower force whose direction changes according to the deformation of the structure, it may undergo static instability (divergence) where transverse natural frequencies merge into zero and dynamic instability (flutter), where two natural frequencies coincide with each other resulting in the amplitude of vibration growing without bound. However, when the follower forces are pulsating in nature, another kind of dynamic instability is also seen. If certain conditions are satisfied between the driving frequency and the transverse natural frequency, then dynamic instability called 'parametric resonance' occurs and the amplitude of transverse vibration increases without bound. The present review paper will discuss the aeroelastic behaviour of aerospace structures under nonconservative forces.

Modified Boundary-Fitted Coordinate System Method for HDD Slider Analysis

  • Hwang, Pyung;Polina V. Khan
    • KSTLE International Journal
    • /
    • v.5 no.2
    • /
    • pp.52-56
    • /
    • 2004
  • The hard disk drive performance depends strongly on air bearing characterisitcs of the head slider. The objective of the slider design is to provide accurate positioning of the magnetic read/write element at the very small height above the disk. Application of the numerical methods is required due to complexity of the air bearing surface of the slider. The Boundary-Fitted Coordinate System Divergence Formulation method can be used for calculation of pressure distribution in the case of steep film thickness gradients. In the present work, the interpolating functions used in the expression for the Couette flow are modified in order to improve the solution characteristics in the extremely high compressibility number region. The advantages of the modified method are demonstrated on example of the flat skewed slider. Finally, the modi.ed method is applied to analysis of the static characteristics of the femto-slider. The analysis results indicate the effect of the silder's air bearing surface crown on the flying height and the pitching angle in steady state position.

Study on Static Pressure Error Model for Pressure Altitude Correction (기압 고도의 정밀도 향상을 위한 정압 오차 모델에 관한 연구)

  • Jung, Suk-Young;Ahn, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2005
  • In GPS/INS/barometer navigation system for UAV, vertical channel damping loop was introduced to suppress divergence of the vertical axis error of INS, which could be reduced to the level of accuracy of pressure altitude measured by a pitot-static tube. Because static pressure measured by the pitot-static tube depends on the speed and attitude of the vehicle, static pressure error models, based on aerodynamic data from wind tunnel test, CFD analysis, and flight test, were applied to reduce the error of pressure altitude. Through flight tests and sensitivity analyses, the error model using the ratio of differential pressure and static pressure turned out to be superior to the model using only differential pressure, especially in case of high altitude flight. Both models were proposed to compensate the effect of vehicle speed change and used differential and static pressure which could be obtained directly from the output of pressure transducer.

Individual DC Voltage Balancing Method at Zero Current Mode for Cascaded H-bridge Based Static Synchronous Compensator

  • Yang, Zezhou;Sun, Jianjun;Li, Shangsheng;Liao, Zhiqiang;Zha, Xiaoming
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.240-249
    • /
    • 2018
  • Individual DC voltage balance problem is an inherent issue for cascaded H-bridge (CHB) based converter. When the CHB-based static synchronous compensator (STATCOM) is operating at zero current mode, the software-based individual DC voltage balancing control techniques may not work because of the infinitesimal output current. However, the different power losses of each cell would lead to the individual DC voltages unbalance. The uneven power losses on the local supplied cell-controllers (including the control circuit and drive circuit) would especially cause the divergence of individual DC voltages, due to their characteristic as constant power loads. To solve this problem, this paper proposes an adaptive voltage balancing module which is designed in the cell-controller board with small size and low cost circuits. It is controlled to make the power loss of the cell a constant resistance load, thus the DC voltages are balanced in zero current mode. Field test in a 10kV STATCOM confirms the performance of the proposed method.

Optimum design of retaining structures under seismic loading using adaptive sperm swarm optimization

  • Khajehzadeh, Mohammad;Kalhor, Amir;Tehrani, Mehran Soltani;Jebeli, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.93-102
    • /
    • 2022
  • The optimum design of reinforced concrete cantilever retaining walls subjected to seismic loads is an extremely important challenge in structural and geotechnical engineering, especially in seismic zones. This study proposes an adaptive sperm swarm optimization algorithm (ASSO) for economic design of retaining structure under static and seismic loading. The proposed ASSO algorithm utilizes a time-varying velocity damping factor to provide a fine balance between the explorative and exploitative behavior of the original method. In addition, the new method considers a reasonable velocity limitation to avoid the divergence of the sperm movement. The proposed algorithm is benchmarked with a set of test functions and the results are compared with the standard sperm swarm optimization (SSO) and some other robust metaheuristic from the literature. For seismic optimization of retaining structures, Mononobe-Okabe method is employed for dynamic loading conditions and total construction cost of the structure is considered as the single objective function. The optimization constraints include both geotechnical and structural restrictions and the design variables are the geometrical dimensions of the wall and the amount of steel reinforcement. Finally, optimization of two benchmark retaining structures under static and seismic loads using the ASSO algorithm is presented. According to the numerical results, the ASSO may provide better optimal solutions, and the designs obtained by ASSO have a lower cost by up to 20% compared with some other methods from the literature.

Cross-cultural Studies Revisited in International Business (국제비즈니스에서 비교문화 연구의 재검토)

  • Cho, Ho-Hyeon
    • Iberoamérica
    • /
    • v.12 no.1
    • /
    • pp.407-439
    • /
    • 2010
  • Growth of researches addressing cross-culture in international business is exponential. This article reviews the extant researches around the national culture and describes the various conceptualization of culture through discussion of some of popular models of national culture. This article presented some of the most important issues in international business surrounding globalization, especially convergence and divergence of cultures and cultural changes. Global rapid changes in international business environment request the reconsideration of the assumption of cultural stability and the simple view of culture, which tends to examine the static influence of a few cultural factors in isolation form other cultural factors and contextual elements. This paper identifies a valid cultural grouping and proposes the following typology of the possible methodologies in international business; Ethnological description, Use of proxies, Direct values inference, and Indirect values inference. Rather than selecting a single methodology, it appears to be more appropriate to use multi-method in the cross-cultural international business research. It has been shown that cultural change is intertwined with socioeconomic-institutional variables, and that these variables may also add to determine culture contemporarily. This paper also explained the dynamics of culture as multi-level, multi-layer constructs. According to this model, we may understand how the dynamic nature of culture conveys the top-down-bottom-up processes where one cultural level affects changes in other level of culture.

Effect of Boundary Conditions on the Stability Characteristics of Nanopipes (경계조건에 따른 나노파이프의 안정성 특성)

  • Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1057-1064
    • /
    • 2008
  • In this paper, static and oscillatory instability of nanopipes conveying fluid and modelled as a thin-walled beam is investigated. Effects of boundary conditions and non-classical transverse shear and rotary inertia are incorporated in this study. The governing equations and the three different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for different boundary conditions of carbon nanopipes are investigated and pertinent conclusion is outlined.

Stability Analysis of Nanopipes Considering Nonlocal Effect (Nonlocal 효과를 고려한 나노파이프의 안정성 해석)

  • Choi, Jongwoon;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.324-331
    • /
    • 2013
  • In this paper, static and oscillatory instability of a nanotube conveying fluid and modeled as a thin-walled beam is investigated. Analytically nonlocal effect, effects of boundary conditions, transverse shear and rotary inertia are incorporated in this study. The governing equations and boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extended Galerkin method which enables us to obtain more accurate results compared with conventional Galerkin method. Variations of critical flow velocity of carbon nanopipes with two different boundary conditions based on the analytically nonlocal theory and partially nonlocal theory are investigated and pertinent conclusions are outlined.