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Modified Boundary-Fitted Coordinate System Method for HDD Slider Analysis
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Abstract: The hard disk drive performance depends strongly on air bearing characteristics of the head slider. The objective of
the slider design is to provide accurate positioning of the magnetic read/write element at the very small height above the disk.
Application of the numerical methods is required due to complexity of the air bearing surface of the slider. The Boundary-Fitted
Coordinate System Divergence Formulation method can be used for calculation of pressure distribution in the case of steep film
thickness gradients. In the present work, the interpolating functions used in the expression for the Couette flow are modified in
order to improve the solution characteristics in the extremely high compressibility number region. The advantages of the
modified method are demonstrated on example of the flat skewed slider. Finally, the modi.ed method is applied to analysis of the
static characteristics of the femto-slider. The analysis results indicate the effect of the slider’s air bearing surface crown on the
flying height and the pitching angle in steady state position.
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Introduction

The main computer data storage, such as the hard disk drive
has several heads (sliders) and disks. The magnetic reading/
writing elements are mounted on the slider that flies above the
disk under the action of suspension force and air bearing force.
Increasing the areal storage density required decreasing the
flying height.

The numerical methods provide useful instrument for the
slider air bearing design. The Boundary-Fitted Coordinate
System Divergence Formulation method (BFCS DF method)
[1] allows calculation of the air bearing pressure for the slider
with complicated boundary conditions. The convective
{Couette) flow terms in the dimensionless Reynolds’ equation
are proportional to compressibility number (A) that is rapidly
increased with decreasing the flying height {2]. Therefore, high
compressibility number region corresponds to the convection
dominated flow. Practically any numerical method, applied to
analysis of the convection dominated flow, must utilize the
upstream approach in order to avoid the artificial waviness of
the solution [3,4,5,6]. In the BFCS DF method [1,6], the high-
amplitude discontinuity in the direction of the Couette flow
was successtully suppressed, by the mean of the upstream
scheme. However, the much smaller discontinuity in the
transverse direction remained, and became significant with
further increasing of compressibility number in HDD slider
analysis problems. In the present work, the transverse
discontinuity in the solution is eliminated by modifying the
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BFCS DF method. First, the performance of the original and
modified BFCS DF methods are compared for the simple
slider model. After this, the static analysis of the femto slider is
conducted by using the modified method.

Fundamental Equations

The pressure distribution in the air film between slider and disk
is described by the Reynolds equation for isothermal compressible
flow that has the dimensionless form [2]

%{(H%Pg—;) + E%/(H%Pg—l;) =

) d
A(a—X(PHU) + a—)—/(PHV)) . (N

where (X, Y) = (x, ¥)/b are dimensionless coordinates, P = p/p,
is the dimensionless pressure, H = h/h, is the dimensionless
film thickness, ¢ is the Poiseuille flow rate coefficient
accounting for the air rarefaction effect, A = 6u,nb/(py) is
the compressibility number, and (U, V)= (u, u)u, is the
dimensionless disk surface velocity.

The Reynolds equation (1) is equivalent to the mass
conservation law

dq", dg’ _

0X * oY 0. )
where

q = —HB(pPa—P +APHU, (3a)

oX
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Fig. 1. Physical and computational domains.

g = ~H3¢P%§+ APHV . (3b)

In order to describe the boundary conditions correctly, the
mesh in the physical domain is drawn so that mesh lines
follows the film thickness steps boundaries. Such mesh is
called the Boundary-Fitted Coordinate System. The discretization
is easier, if in the computational domain the mesh is rectilinear
with equidistant nodes position (Fig. 1). The local coordinate
transformation parameters x;, x,, ys y, are defined as following

dx Xg X d
(y)=(¢".(§). @
d Ve yn/ N
The mass fluxes in the computational domain are given by the
following equations

0° = [F(-AP.+BP, +DP)dn, (52)

0" = f'(BP.~CP, +EP)E. (5b)
where

A=Haal),

B = H'a(3)),

C=Hgy),

D = AH(Uy, — Vx,),

E = AH(-Uy; + Vx,), (6)

a= xfl + yfl

B= xpxg + yyye
2 2

V=Xt v

J=xexy=yeyy

In Eq. (5), the terms with coefficients A, B and C express the
Poiseuille flow, and the terms with coefficients D and E
express the Couette flow.

The control volume includes nine nodes. Total mass flux is
calculated separately in the four zones around the central node
(Fig. 2). The film thickness, velocity and pressure (for
Poiseuille flow) are defined at nodes and are linearly
interpolated within each zone. In agreement with Eq. (2), total
flux in each node must equal zero

0=0,+0=0. 7

The Poiseuille flow @, is similar with one, considered by
Kawabata [1] and will not be expanded here. The Couette flow
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Fig. 2. Total flux for node (i, j).

QO is considered in details in the next section.
Couette Flow Calculation

In the BFCS method with upstream scheme [1], the total
Couette flow is expressed as follows

1 8
chgzaipi’ 8
i=0

where

ay = 3(D;=Dy+ Dy = Dy + E + Eyy - Epy - Ejy) , (9)
a = 3(D1++D,+”)+E}—E,+”,

a, = =3(Dy+ D)+ Ej;-Ej}y,

ay = D;- Dy, +3(E; +Ep),

ay = Dy = Dyy=3(E; + Epy), 10

+ +
as = D, +E;,

- +
ag = =Dy +Ey,
+ -
a; = Dy —Eyy,s
ay = Dy —Ejy. (11)

and D" , D™, E* and E~ are defined as follows

D =0.5(D + ADI),
D~ =0.5(D - ADl),
E+=05(E + AR,
E = 0.5(E — AR, (12)

When the upstream coefficient, A, is zero, D" =D "=0.5D,
E'=FE =0.5E, and Egs. (9-11) correspond to the Couette flow
terms (Eq. (5)), that was integrated with linearly interpolated
pressure. In such scheme, the coefficient of P,, i.e. a, can
become positive (Eq. (9)). Since D and E are proportional to
the compressibility number A (see Eq. (6), increasing A can
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Fig. 3. Original BFCS. Interpolating function in Couette flow
term. (a) -&-direction, (b) -7-direction.
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Fig. 4. Modified BFCS. Interpolating function in Couette flow
term. (a) -&-direction, (b) - 77-direction.

result in positive coefficient of P, in the total flux (Eq. (7)). In
this case, the nodal pressure is alternating and the solution is
wavy.

When the upstream coefticient, A. achieves unit, we have
fully upstream scheme with D'=D,D=0,E=Eand E"=0.
In this case, Egs. (9-11) correspond to the Couette flow terms
that was integrated with pressure interpolation same as in Fig.
3. We can see (Eq. (9)), that in this case, the coefficient of Py is
strictly negative, thus the alternating, wavy solution is avoided.
1n low compressibility number region the full upstream scheme
produce inaccurate solution with so called “false diffusion” [3].

However, as we can see from Eg. (10), &direction dominant
flow can result in negative values of a; and a,, as well as 77-
direction dominant flow can result in negative values of @, and
a,. Thus, waviness in direction, perpendicular to the disk
surface velocity, can be expected.

In order to eliminate this kind of artificial waviness, the
pressure distribution, as shown in Fig. 4 for fully upstream
scheme, was substituted to the integrals (5). The coefficients of
Eq. (8) were modified as follows

ay = 4(D; - Dy + Dy =Dy + Ep+ Eyy=Em=E1) (13)
a, = 3(D] +Djy) +0.5(E; —Eypp),

ay = =3(Dy+Dyy) +0.5(E, —Epy) .

ay = 0.5(D; -Dyp) +3(E] +E})),

0-5(D1+11*D}v)_ 3E+En (14)

a,

1

a; = 0.5(D] +E]).

Fig. 5. The position of slider above the disk.

a, = 0.5(~ D},+E;,).
ay = 0.5(D7”—E',”),
ag = 0.5(-Dy—Epy), (15)

In this case, the central node coefficient is strictly negative
(13) and the diagonal nodes coefficients are strictly positive
(15), as before, and the coefficients a,, a, @ and a, are also
strictly positive, so, no arti.cial waviness can be expected for
the fully upstream scheme. The inaccuracy introduced to the
solution by this modification is expected to be of the same
order with one, introduced by original fully upstream scheme.
However, numerical experiments are required to show that the
solution remains the same for low compressibility number
values.

Steady State Position

The slider has three degrees of freedom: vertical motion,
pitching and rolling. The corresponding position components
are called flying height, &, pitching angle, ¢, and rolling angle,
6 (Fig. 5).

The position of the slider and its surface shape s (X, Y)
define the distribution of the air film thickness between the
slider and the disk surface

H(X, Y) = (hs(x, y) + b+ @b —x) + &2 ~ y)h. (16)

As was mentioned before, the pressure distribution P(X, Y)
is related to the film thickness H(X, Y) (see Eq. (1)). Hence, the
slider position defines the pressure distribution for given slider
surface shape, disk rotation speed and radial position of the
slider.

Total vertical force, pitching moment and rolling moment
consist of the air bearing pressure resultant force and moments
and the action of the preload force W, applied at the point (x,,
V-

L(h, ¢. )= W + [pdxdy. © (7
Myh, ¢, )= W (x, ~bl2) — jp(x ~b/2)dxdy, (18)
Mh, 6, O= W (3, ~112) = [p(y —1/2)dxdy . (19)

In the steady state position of the slider the total force and
moments should equal zero

(L, M,, M) = (0.0, 0). (20)

In the present work, the steady state position is determined
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Fig. 6. Skewed slider.
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Fig. 8. Air bearing surface of the femto-slider.
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Fig. 7. Pressure distribution for skewed slider. (a) -Original
BFCS, (b) -Modified BFCS.
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Table 1. Skewed slider parameters
b

Fig. 9. Mesh for the femto-slider analysis.
/ b, u
3 mm

20 m/sec

2 mm 24 mm

by using the search algorithm, based on the optimization
approach [7].

Computational Test

The original and modified methods were used to calculate the
pressure distribution for skewed slider (Fig. 6). The parameters
of the skewed slider are given in Table 1. Minimum film
thickness, that is the same as the flying height and the base

film thickness in this example, takes the values 800, 80, 15 nm.
Corresponding values of the compressibility number approximately

equal 110, 11,000 and 300,000. The pitching angle is chosen to
provide 4,,./h,,, = 2 for all values of A

min®

Figure 7 shows that the pressure distribution, calculated by
original BFCS DF method, becomes discontinuous at higher
values of A, while the modified methods provides smooth
solution. As could be expected, the waviness appear only in the

transverse direction. Note, that for smaller A both methods
give identical results,

Fig. 10. Pressure distribution of the femto-slider.

for static analysis of the femto-slider [8].

For this slider, 5 =088 mm and 1=0.66 mm. The recess
depths of the base and shallow levels are 2,500 nm and 300 nm
correspondingly (see Fig. 8). The pivot preload amounting 0.5
gf is applied at the slider center. The disk rotation speed is
7,200 rpm and the slider is positioned 15 mm far from the disk

center. Typical values of the compressibility number fall in the
range (350,000; 450,000).

Femto-Slider Analysis

The modified BFCS with fully upstream scheme was applied

The mesh that was used for the femto-slider analysis is
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Table 2. Steady state position of the femto-slider

Crown (nm) Iy (nm) @ (urad) @ (urad)
0 4.5 27 34
i8 8 72 3

shown in Fig. 9. The grid lines are fitted to the pads’ and
recesses’ boundaries. The mesh is refined in the areas where
high pressure gradients are expected.

The static characteristics were estimated for two
modification of the femto slider: one with flat zero recess level
and another one with significant crown. The results are given
in Table 2.

The results show that the crowned slider has bigger flying
height and bigger pitching angle.

The pressure distribution for crowned slider in the steady
state position is shown in Fig. 10. We can see the high pressure
at the leading pads and rail pads, lower pressure at the trailing
edge and the subambient pressure in the central cavity.

Conclusions

The modification of the Couette flow terms in the BFCS DF
method is proposed. The modified method eliminates the
artificial waviness in transverse direction, preserving the
accuracy of the original method. However, it is subject to false
diffusion in the same way as original fully upstream scheme.
Thus, this method is specialized for solution of the Reynolds
equation with extremely high compressibility numbers.

The static characteristics of the femto-slider are studied
using the modified BFCS DF method. The analysis results
show that increasing air bearing crown increased the steady
state flying height and pitching angle.
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