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EINSTEIN-TYPE MANIFOLDS WITH COMPLETE

DIVERGENCE OF WEYL AND RIEMANN TENSOR

Seungsu Hwang and Gabjin Yun

Abstract. In this paper, we study Einstein-type manifolds generalizing

static spaces and V -static spaces. We prove that if an Einstein-type
manifold has non-positive complete divergence of its Weyl tensor and

non-negative complete divergence of Bach tensor, then M has harmonic
Weyl curvature. Also similar results on an Einstein-type manifold with

complete divergence of Riemann tensor are proved.

1. Introduction

Let (M, g) be an n-dimensional smooth Riemannian manifold of dimension
n ≥ 3. We say that (M, g, f, h) is called an Einstein-type manifold if g is a
solution of

fr = Ddf + hg(1)

for some smooth functions f, h on M . Here, r is Ricci curvature and Ddf is
the Hessian of f .

Catino et al. considered (gradient) Einstein-type manifolds generalizing Ricci
solitons [2]. They showed rigidity results of gradient Einstein-type manifolds
under i∇fB = 0, where B is the Bach tensor. Here, i∇f is the interior prod-
uct with respect to ∇f . Recall that the Bach tensor B on an n-dimensional
Riemannian manifold (M, g), n ≥ 4, is defined by

B =
1

n− 3
δDδW +

1

n− 2
W̊z,
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where W is the Weyl tensor, z is the traceless Ricci tensor, and W̊z is defined
by

W̊z(X,Y ) =

n∑
i=1

z(W(X,Ei)Y,Ei)

for some orthonormal basis {Ei}ni=1.
Motivated by the above work, Leandro introduced in [6] Einstein-type mani-

folds generalizing several interesting geometric equations, such as static vacuum
Einstein equations, static perfect fluid equation, CPE equations, and V-static
equations (see Section 2 for details). It should be noted that Einstein-type man-
ifolds may have non-constant scalar curvature. For example, if (M, g, f, µ, ρ)
satisfies static perfect fluid equation given by

fr = Ddf +
(µ− ρ)f

n− 1
g(2)

with

∆f =
(n− 2)µ+ nρ

n− 1
f,(3)

then the scalar curvature is equal to 2µ [3]. Here, the mass-energy density µ
and pressure ρ are smooth functions on M .

In [6], it was proved that an Einstein-type manifold has harmonic Weyl
tensor if the complete divergence of the Weyl tensor vanishes, or

div4W = 0

with zero radial Weyl curvature, or i∇fW = 0. Therefore, it would be interest-
ing to find weaker curvature conditions to guarantee the rigidity of Einstein-
type manifolds other than the ones mentioned above. In this direction, for
example, Qing and Yuan classified Bach-flat vacuum static spaces [7]. A Rie-
mannian manifold (M, g) is called a vacuum static space if the metric satisfies
static vacuum Einstein equation

fr = Ddf +
sf

n− 1
g,(4)

where s is the scalar curvature. In [5] it was proved that vacuum static spaces
with div4W = 0 has harmonic curvature if div2B ≥ 0 for n ≥ 5, or 1

2 |C|
2 ≥

−〈divC, zg〉 for n = 4. Under the same condition we also proved in [5] that
a nontrivial solution (M, g) of CPE (see (9) in Section 2) is isometric to a
standard sphere. Recall that the Cotton tensor C ∈ Γ(Λ2M ⊗T ∗M) is defined
by

C = dD
(
r − s

2(n− 1)
g

)
= dDz +

n− 2

2n(n− 1)
ds ∧ g.(5)

Here, dDz is defined by

dDz(X,Y, Z) = DXz(Y, Z)−DY z(X,Z)
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for any vectors X,Y, Z, where D is the Levi-Civita connection of (M, g), and
for a 1-form φ and a symmmetric 2-tensor η ∈ C∞(S2M), φ ∧ η is defined by

(φ ∧ η)(X,Y, Z) = φ(X)η(Y,Z)− η(Y )η(X,Z).

The purpose of this paper is to show that same result holds for generic
Einstein-type manifolds. More precisely, we prove the following result.

Theorem 1.1. Let (M, g, f, h) be an Einstein-type manifold having non-posi-
tive complete divergence of the Weyl tensor, or div4W ≤ 0. Assume that
div2B ≥ 0 for n ≥ 5, or 1

2 |C|
2 ≥ −〈divC, zg〉 for n = 4. If f is proper, then

M has harmonic Weyl curvature.

It should be noted that M need not to be compact and the scalar curvature
of (M, g) may not be constant in Theorem 1.1. We need to explain the condition
for n = 4; in dimension 4, the divergence of B always vanishes, implying that
div2B ≥ 0 is not an additional condition for n = 4. Therefore, a proper
condition for n = 4 is needed. Note that, for n ≥ 5 we have div2B ≥ 0 if and
only if

1

2
|C|2 ≥ −〈divC, z〉.(6)

Thus, (6) is an appropriate condition replacing div2B ≥ 0 for n = 4.
On the other hand, the complete divergence of Riemannian curvature, or

div4R, is also an interesting condition to consider. For example, Yang and
Zhang proved the rigidity of gradient shrinking Ricci solitons under div4R = 0
[8]. For Einstein-type manifolds, we have the following results.

Theorem 1.2. Let (M, g, f, h) be an Einstein-type manifold having non-posi-
tive complete divergence of Riemannian curvature tensor, or div4R ≤ 0. As-
sume that div2B ≥ 0 for n ≥ 5, or 1

2 |C|
2 ≥ −〈divC, zg〉 for n = 4. If f is

proper and ∫
Γt

1

|∇f |
r(∇s,∇f) dσ = 0

on Γt = f−1(t) for a regular value t of f , thenM has harmonic Weyl curvature.

As an immediate consequence of Theorem 1.2, we have the following result.

Corollary 1.3. Let (M, g, f, h) be an Einstein-type manifold with div4R ≤ 0.
Assume that div2B ≥ 0 for n ≥ 5, or 1

2 |C|
2 ≥ −〈divC, zg〉 for n = 4. If

f is proper and the scalar curvature is constant, then M has harmonic Weyl
curvature.

2. Preliminaries

In this section, we shall find basic properties of the scalar curvature of
Einstein-type manifolds. Let λ be a smooth function given by

λ = h− s

n− 1
f.
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We can rewrite Einstein-type equation (1) as

f z = Ddf +

(
sf

n(n− 1)
+ λ

)
g.(7)

By taking the trace of (7), we have

∆f = − sf

n− 1
− nλ = sf − nh.(8)

Note that λ = 0 if f = 0 in (7). If f is a nonzero constant, then λ = − sf
n(n−1)

and so f z = 0, i.e., (M, g) is Einstein and both s and λ are constants. From
now on, we may assume that f is a non-constant function.

When λ = 0 with s = 0, we have a static vacuum Einstein equation given
by

fr = Ddf

with ∆f = 0. When λ = 0, we have a static vacuum equation s′∗g (f) = 0, or

satisfying (4). Here, s′∗g is the L2-adjoint of the linearization s′g of the scalar

curvature sg. When λ = −ρ+µn−1f , we have static perfect fluid equation (2) with

(3). When λ = − s
n(n−1) with f = 1 + ϕ, we have a CPE given by

(1 + ϕ) z = Ddϕ+
sϕ

n(n− 1)
g.(9)

Finally, when λ = κ
n−1 , we have a V-static equation given by

s′∗g (f) = κ g.

It becomes a Miao-Tam critical equation when κ = 1. Let Γ = f−1(0). We
have learned that the following result is proved in [3] in the case of static perfect
fluid spacetime.

Proposition 2.1. The scalar curvature is constant if and only if λ is constant.

Proof. By taking the divergence of (7), we have

z(∇f, ·) +
n− 2

2n
f ds = r(∇f, ·) + d∆f +

1

n(n− 1)
d(sf) + dλ

= r(∇f, ·)− 1

n
d(sf) + (1− n)dλ.

Here, we used the fact that div z = n−2
2n ds and

divDdf = r(∇f, ·) + d∆f.

Thus,

1

2
fds+ (n− 1)dλ = 0.(10)

Therefore, if s is constant,

dλ = 0,

implying that λ is constant.
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Conversely, if λ is constant, then

1

2
f ds = 0(11)

implying that s is constant, possibly except at f−1(0). If 0 is a regular value of
f , then we are done. Suppose that there is an open subset Σ of critical points
in Γ = f−1(0). At Γ we have

Ddf = −λg.

If λ 6= 0, then a critical point of f in Γ is non-degenerate and so isolated,
contradicting that Σ ⊂ Γ. If λ = 0, then (1) becomes a static vacuum equation,
implying that there should be no critical points of f in Γ [4], or Σ = ∅. These
contradiction implies that 0 is a regular value of f . �

Note that, since (1) becomes a static space when λ = 0, Einstein-type equa-
tions may be considered as a perturbation of static space with perturbation
factor λ. As a result of Proposition 2.1, an Einstein-type manifold reduces to
a V -static manifold if the scalar curvature is constant.

Remark 2.2. The following is an example of Einstein-type manifolds having
constant scalar curvature. Let Mn = S1 × Sn−1 with the product metric g =
dt2 + g0, where g0 is the cannonical metric on Sn−1. Take f(t) = cos

√
n− 2 t

on S1 = [0, 2
√
n− 2π]/ ∼ with end points identified. Then, for h(t) = (n −

2) cos
√
n− 2 t

fr

(
∂

∂t
,
∂

∂t

)
= 0 = Ddf

(
∂

∂t
,
∂

∂t

)
+ (n− 2) cos

√
n− 2 t,

since Ddf
(
∂
∂t ,

∂
∂t

)
= −(n− 2) cos

√
n− 2 t. Also, since r

(
∂
∂θi
, ∂
∂θj

)
= (n−2)δij

and Ddf
(

∂
∂θi
, ∂
∂θj

)
= 0, we found that (g, f, h) satisfies

fr = Ddf + hg.

3. Divergence of Bach tensor

In this section we shall prove Theorem 1.1. First note that the divergence
of the Bach tensor satisfies

divB(X) =
n− 4

(n− 2)2
〈iXC, z〉.

Thus, the complete divergence of B satisfies

div2B =
n− 4

(n− 2)2

(
1

2
|C|2 + 〈divC, z〉

)
.(12)

Therefore, div2B ≥ 0 if and only if

1

2
|C|2 ≥ −〈divC, z〉.(13)
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For the Cotton tensor C, it is well known (cf. [1]) that the complete divergence
of the Weyl tensor is related to C by

divW =
n− 3

n− 2
C.(14)

Also we have

div2 C(X) =
1

2
〈̃iXW, C〉 − 1

n− 2
〈iXC, z〉(15)

for any vector field X (for example, see Proposition 2 in [5]). Here, ĩX is the
interior product to the final factor by

ĩξω(X,Y, Z) = ω(X,Y, Z, ξ)

for a 4-tensor ω and a vector field ξ.

We introduce a 3-tensor T for Einstein-type manifolds. Namely, we define
T as

T =
1

(n− 1)(n− 2)
i∇fz ∧ g +

1

n− 2
df ∧ z.

To prove our main results, we need the following property.

Lemma 3.1. Let (g, f, λ) be a solution of (7). Then

f C = ĩ∇fW − (n− 1)T.

Proof. Let (g, f, λ) be a solution of (7). By taking dD to the both sides of (7),
we have

dD(fz) = df ∧ z + fdDz

= dDDdf +
1

n(n− 1)
d(sf) ∧ g + dλ ∧ g.

From the

dDDdf = ĩ∇fR

= ĩ∇fW −
1

n− 2
i∇fz ∧ g −

1

n(n− 1)
df ∧ g − 1

n− 2
df ∧ z,

we have

f dDz = ĩ∇fW −
1

n− 2
i∇fz ∧ g −

n− 1

n− 2
df ∧ z(16)

+
1

n(n− 1)
f ds ∧ g + dλ ∧ g.

Our lemma follows from the definition of C together with (5) and (10). �

Lemma 3.2. We have

div2C(∇f) =
1

2
f |C|2 + 〈i∇fC, z〉.
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Proof. Note that

〈T,C〉 =
1

n− 2
〈df ∧ z, C〉 =

2

n− 2
〈i∇fC, z〉.

By (15) and Lemma 3.1, we have

div2C(∇f) =
1

2
〈̃i∇fW, C〉 − 1

n− 2
〈i∇fC, z〉 =

1

2
f |C|2 + 〈i∇fC, z〉.

�

One of main ingredients to prove our results is a kind of monotonicity prop-
erty on the integral of the divergence of the Bach tensor. For an Einstein-type
manifold (M, g) with potential functions f and λ, let Mt,t′ = {x ∈ M | t ≤
f(x) ≤ t′} and Γt = {x ∈M | f(x) = t} for any real numbers t and t′.

Lemma 3.3. Assume that 1
2 |C|

2 ≥ −〈divC, z〉 for n ≥ 4 on an Einstein-type
manifold with compact level sets Γt. Then∫

Γt

1

|∇f |
〈i∇fC, z〉 dσ

is monotone increasing with respect to regular values t′s of f . Here, dσ denotes
the induced (n− 1)-volume form on Γt.

Proof. Note that, for an orthonormal frame {Ei}ni=1 we have

〈divC, z〉 = div(C(·, Ei, Ej)zij)− CijkDEizjk

= div(C(·, Ei, Ej)zij)−
1

2
|C|2.

Here, we used the fact that

2CijkDEizjk = CijkDEizjk + CjikDEjzik = Cijk(DEizijk −DEjzik) = |C|2.

Thus, by (13)

div(C(·, Ei, Ej)zij) =
1

2
|C|2 + 〈divC, z〉 ≥ 0

on M . This implies that

0 ≤
∫
Mt,t′

div(C(·, Ei, Ej)zij) =

∫
∂Mt,t′

1

|∇f |
〈i∇fC, z〉 dσ

=

∫
Γt′

1

|∇f |
〈i∇fC, z〉 dσ −

∫
Γt

1

|∇f |
〈i∇fC, z〉 dσ.

�

Now, we are ready to prove Theorem 1.1, which states that the non-positive
complete divergences of the Cotton tensor on an Einstein-type manifold (M, g,
f, λ) with non-negativity of div2B implies that (M, g) has harmonic curvature
for n ≥ 4 if f is proper.
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Suppose that Γ0 = ∅. Then, either f > 0 or f < 0 on M . First assume that
f > 0. Let Mt = {x ∈M | f(x) < t} for t > 0 so that M0,t = Mt. In this case,
by Lemma 3.3 that ∫

Γt

1

|∇f |
〈i∇fC, z〉dσ ≥ 0.

For a regular value t > 0, the divergence theorem together with Lemmas 3.2
and 3.3 shows∫

Mt

div3C dvg =

∫
Γt

div2C(N) dσ =
1

2

∫
Γt

f |C|2

|∇f |
+

∫
Γt

1

|∇f |
〈i∇fC, z〉 dσ

≥ t

2

∫
Γt

|C|2

|∇f |
dσ.

Here, N = ∇f/|∇f |. Since div3C ≤ 0 and t is arbitrary, this implies that
C = 0 on M .

For the case f < 0 on M , consider M−t = {x ∈ M | f(x) > −t} with a
regular value −t of f , t > 0. Then M−t,0 = M−t. Since

0 ≤
∫
M−t

div(C(·, Ei, Ej)zij) = −
∫

Γ−t

1

|∇f |
〈i∇fC, z〉,

we have∫
M−t

div3C = −
∫

Γ−t

div2C(N) = −1

2

∫
Γ−t

f |C|2

|∇f |
−
∫

Γ−t

1

|∇f |
〈i∇fC, z〉

≥ t

2

∫
Γ−t

|C|2

|∇f |
.

Since div3C ≤ 0, C vanishes on all of M .
Now, suppose that f−1(0) 6= ∅. For regular values t and t′ of f with t < t′,

from Lemma 3.3, we have∫
Mt,t′

div3C =

∫
Γt′

div2C(N)−
∫

Γt

div2C(N)

≥ t′

2

∫
Γt′

|C|2

|∇f |
− t

2

∫
Γt

|C|2

|∇f |
.

Here, N = ∇f
|∇f | , and we used the result of Lemma 3.2 in the last equality.

Therefore, it follows from the assumption that div3C ≤ 0 that

t

∫
Γt

|C|2

|∇f |
≥ t′

∫
Γt′

|C|2

|∇f |
.

By taking t′ = 0, we may conclude that C = 0 on Γt for all regular values t of f
with t < 0. Similarly, one can prove that C = 0 on Γt′ for any positive regular
value t′ of f by taking t = 0. Hence, we may conclude that C = 0 on all of
M by continuity. In other words, M has harmonic curvature. This proves our
theorem.
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4. Complete divergence of Riemannian curvature tensor

In this section we investigate the complete divergence of Riemannian cur-
vature tensor in an Einstein-type manifolds and prove Theorem 1.2. Let R
be the Riemannian curvature tensor. From the decomposition of Riemannian
curvature tensor, we have

(divW)ijk =
n− 3

n− 2
(divR)ijk −

n− 3

2(n− 1)(n− 2)
(ds ∧ g)jki.

Thus we can obtain

(div2W)ik =
n− 3

n− 2
(div2R)ik −

n− 3

2(n− 1)(n− 2)
(∆s gik − (Dds)ik),

(div3W)i =
n− 3

n− 2
(div3R)i +

n− 3

2(n− 1)(n− 2)
r(∇s, Ei),

and

(17) div4W =
n− 3

n− 2
div4R+

n− 3

2(n− 1)(n− 2)

(
1

2
|∇s|2 + 〈r,Dds〉

)
.

Therefore, if div4R ≤ 0, by (14)

(18) div3C =
n− 2

n− 3
div4W ≤ 1

2(n− 1)

(
1

2
|∇s|2 + 〈r,Dds〉

)
.

By integrating (18) on any subset Ω of M , we have∫
Ω

div3 C dvg ≤
1

2(n− 1)

∫
∂Ω

1

|∇f |
r(∇s,∇f).

Thus, assume that ∫
Γt

1

|∇f |
r(∇s,∇f) = 0.

If f > 0 on M , by arguing as in the proof of Theorem 1.1,

t

2

∫
Γt

|C|2

|∇f |
dσ ≤

∫
Mt

div3 C ≤ 1

2(n− 1)

∫
Γt

1

|∇f |
r(∇s,∇f) = 0

for t > 0, implying that C = 0 on M . Here, we used Lemma 3.3. A similar
argument also holds when f < 0 on M .

In general case, or Γ0 6= ∅, for regular values t and t′ with t < t′,

t′

2

∫
Γt′

|C|2

|∇f |
dσ − t

2

∫
Γt

|C|2

|∇f |
dσ ≤

∫
Mt,t′

div3 C

≤ 1

2(n− 1)

∫
∂Mt,t′

1

|∇f |
r(∇s,∇f) = 0.

Therefore, as argued in the proof of Theorem 1.1, we may conclude that C = 0
on M .
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