• Title/Summary/Keyword: static and dynamic loading

Search Result 435, Processing Time 0.028 seconds

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini;Akanshu Sharma;Vasant A. Matsagar
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.499-511
    • /
    • 2023
  • Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.

Study of Crush Strength of Aluminum Honeycomb for Shock Absorber of Lunar Lander (달착륙선 충격흡수장치용 알루미늄 허니콤의 Crush Strength에 관한 연구)

  • Kim, Shin;Lee, Hyuk-Hee;Kim, Hyun-Duk;Park, Jung-Sun;Im, Jae-Hyuk;Hwang, Do-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2010
  • Understanding the crushing behaviour of aluminum honeycombs under dynamic loading is useful for crash simulations of vehicles and for design of impacting energy absorbers. In the study of honeycomb crushing under quasi-static, dynamic loading, the most important parameter is crush strength. Crush strength is indicated to energy absorption characteristic of aluminum honeycomb. In this study, Using Finite Element Analysis carried out crush strength of hexagonal aluminum honeycomb then the results was compared with Quasi-static test. Consequently, Crush strength is different in quasi-static loading and dynamic loading about 16%.

  • PDF

Dynamic Compressive Creep of Extruded Ultra-High Molecular Weight Polyethylene

  • Lee, Kwon-Yong;David Pienkowski;Lee, Sungjae
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1332-1338
    • /
    • 2003
  • To estimate the true wear rate of polyethylene acetabular cups used in total hip arthroplasty, the dynamic compressive creep deformation of ultra-high molecular weight polyethylene (UHMWPE) was quantified as a function of time, load amplitude, and radial location of the specimen in the extruded rod stock. These data were also compared with the creep behavior of polyethylene observed under static loading. Total creep strains under dynamic loading were only 64%, 70%, and 61% of the total creep strains under static loading at the same maximum pressures of 2 MPa,4 MPa, and 8 MPa, respectively. Specimens cut from the periphery of the rod stock demonstrated more creep than those cut from the center when they were compressed in a direction parallel to the extrusion direction (vertical loading) whereas the opposite was observed when specimens were compressed in a direction perpendicular to the extrusion direction (transverse loading). These findings show that creep deformation of UHMWPE depends upon the orientation of the crystalline lamellae.

A large-scale test of reinforced soil railway embankment with soilbag facing under dynamic loading

  • Liu, Huabei;Yang, Guangqing;Wang, He;Xiong, Baolin
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.579-593
    • /
    • 2017
  • Geosynthetic reinforced soil retaining walls can be employed as railway embankments to carry large static and dynamic train loads, but very few studies can be found in the literature that investigate their dynamic behavior under simulated wheel loading. A large-scale dynamic test on a reinforced soil railway embankment was therefore carried out. The model embankment was 1.65 meter high and designed to have a soilbag facing. It was reinforced with HDPE geogrid layers at a vertical spacing of 0.3 m and a length of 2 m. The dynamic test consisted of 1.2 million cycles of harmonic dynamic loading with three different load levels and four different exciting frequencies. Before the dynamic loading test, a static test was also carried out to understand the general behavior of the embankment behavior. The study indicated the importance of loading frequency on the dynamic response of reinforced soil railway embankment. It also showed that toe resistance played a significant role in the dynamic behavior of the embankment. Some limitations of the test were also discussed.

Quasi-Static Structural Optimization Technique Using Equivalent Static Loads Calculated at Every Time Step as a Multiple Loading Condition (매 시간단계의 등가정하중을 다중하중조건으로 이용한 준정적 구조최적화 방법)

  • Choe, U-Seok;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2568-2580
    • /
    • 2000
  • This paper presents a quasi-static optimization technique for elastic structures under dynamic loads. An equivalent static load (ESL) set is defined as a static load set which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at every time step are employed to represent the various states of the structure under the dynamic load. They can cover every critical state that might happen at an arbitrary time. Continuous characteristics of dynamic load are simulated by multiple discontinuous ones of static loads. The calculated sets of ESLs are applied as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. Design cycles are repeated until a design converges. The analysis domain gives a loading condition necessary for the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. This iterative process is quite similar to that of the multidisciplinary optimization technique. Even though the global convergence cannot be guaranteed, the proposed technique makes it possible to optimize the structures under dynamic loads. It has also applicability, flexibility, and reliability.

Dynamic buckling analysis of a composite stiffened cylindrical shell

  • Patel, S.N.;Bisagni, C.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.509-527
    • /
    • 2011
  • The paper investigates the dynamic buckling behaviour of a laminated composite stiffened cylindrical shell using the commercial finite element code ABAQUS. The numerical model of the composite shell is validated by static tests. In particular, the experimental collapse test is numerically simulated by a quasi static analysis carried out by both ABAQUS/Standard and ABAQUS/Explicit. The behaviour in the post-buckling field and the collapse load obtained by the analyses are close to the experimental data. The validated model is then used to study the dynamic buckling behaviour with ABAQUS/Explicit. The effects of the loading magnitude and of the loading duration are investigated, implementing in the analysis also first-ply failure criteria. It is observed that the dynamic buckling load is highly affected by the loading duration.

Application of Differential GPS for the Displacement Measurement of Self-anchored Suspension Bridge under the Static and Dynamic Loading Cases (DGPS 기법을 이용한 자정식 현수교의 정동적 변위응답 측정 및 분석)

  • Kim, Hyung-Tae;Seo, Ju-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1126-1132
    • /
    • 2009
  • Bridge structures are designed to support ordinary loadings such as vehicles, wind, temperature and current as well as unexpected loadings like earthquakes and storm. Especially, the displacement of Flexible bridges like an suspension bridge under ordinary loading conditions is necessary to be monitored. In case of long span bridges, there are some difficulties in monitoring the displacement of center of the main span using traditional laser displacement sensors. In this study, the static and dynamic displacement responses due to vehicle loadings were measured by DGPS(differential global positioning system) technique. The displacement response data were compared with data obtained from traditional laser displacement sensors so that the static and dynamic behavior of the bridge under vehicle loadings was examined and the applicability of the displacement response measurement using DGPS technique was verified. The static and dynamic loading test for an self-anchored suspension bridge, So-rok Bridge, was performed using vehicles. The displacement response from DGPS technique and that from laser displacement sensors of the bridge monitoring system were compared. The amplitude of white noise from DGPS based measurement was about 7 mm and that of laser displacement sensor based measurement was about 3 mm. On the other hand, dynamic behavior of the center of main span from DGPS based measurement showed better agreement with influence line of the bridge than that from laser displacement sensors. In addition, there were some irregular and discontinuous variation of data due to the instability of GPS receivers or frequent appearance of GPS satellites. Post-processing via the reference station close to an observation post provided by NGII(National Geographic Information Institute) will be a counter-plan for these defects.

Numerical simulation of the total hip prosthesis under static and dynamic loading (for three activities)

  • Mohammed El Sallah Zagane;Abdelmadjid Moulgada;Murat Yaylaci;Sahli Abderahmen;Mehmet Emin Ozdemir;Ecren Uzun Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.635-645
    • /
    • 2023
  • This study aims to simulate the mechanical behavior of the total prosthesis model of Charnley (CMK3) by the 3D finite element method and to determine the state of the stresses in the femoral components (prosthesis, cement, and bone). The components are subjected to a dynamic load due to three activities (normal walking, climbing stairs, and standing up a chair). Static loading is by selecting the maximum load for the same activities mentioned. The results show that the maximum stresses in the proximal part of the cement are very important. Moreover, new results obtained for different parameters were discussed in detail. It is understood that current research provides important lessons for the surgeon to contribute to the clinical diagnosis of durable implantations and a better understanding of the process of bone remodeling and bone prosthesis.

Characteristics of Hysteretic Behavior of Circular Steel Column using SM490 for Loading Rate (재하속도에 따른 SM490강재 원형강기둥의 이력거동 특성)

  • Jang, Gab Chul;Chang, Kyong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.935-941
    • /
    • 2006
  • The hysteretic behavior of steel structure under cyclic and dynami loading such as earthquake is different to that under static loading. Because structural steels on dynamic deformation is different to static deformation with respect with mechanical characteristics and stress-strain relationship. Therefore, to accurately predict the hysteretic behavior of steel structures such as circular steel columns under cyclic and dynamic loading, the difference of loading carrying capacity and deformation according to loading rate, assumed static and dynamic deformation state, must be investigated. In this study, numerical analyses of circular steel column using SM490 for change of loading rate and diameter-thickness ratio(D/t) were carried out by using three-dimensional elastic-plastic finite element analysis and dynamic cyclic plasticity model of SM490 developed by the authors. Characteristics of hysteretic behavior of circular steel column using SM490, load carrying capacity and energy dissipation ratio, were clarified by analysis results.

Criterion for ductile crack initiation with strength mismatch under dynamic loading (강도적 불균질을 갖는 구조물의 동적하중하에서의 연성크랙 발생조건)

  • 안규백;일본명;일본명;방한서;일본명
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.179-181
    • /
    • 2003
  • The present study focuses on the effect of geometrical discontinuity, strength mismatch, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on the ductile crack initiation using two-parameter criterion. Fracture initiation testing has been conducted under static and dynamic loading using circumferentially notched round-bar specimens. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal elastic-plastic dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out.

  • PDF