DOI QR코드

DOI QR Code

Numerical simulation of the total hip prosthesis under static and dynamic loading (for three activities)

  • Received : 2023.01.14
  • Accepted : 2023.04.25
  • Published : 2023.06.10

Abstract

This study aims to simulate the mechanical behavior of the total prosthesis model of Charnley (CMK3) by the 3D finite element method and to determine the state of the stresses in the femoral components (prosthesis, cement, and bone). The components are subjected to a dynamic load due to three activities (normal walking, climbing stairs, and standing up a chair). Static loading is by selecting the maximum load for the same activities mentioned. The results show that the maximum stresses in the proximal part of the cement are very important. Moreover, new results obtained for different parameters were discussed in detail. It is understood that current research provides important lessons for the surgeon to contribute to the clinical diagnosis of durable implantations and a better understanding of the process of bone remodeling and bone prosthesis.

Keywords

References

  1. Aghili, S.A., Hassani, K. and Nikkhoo, M. (2021), "A finite element study of fatigue load effects on total hip joint prosthesis", Comput. Meth. Biomech. Biomed. Eng., 24(14), 1545-1551. https://doi.org/10.1080/10255842.2021.1900133.
  2. Ascenzi, A. and Bonucci, E. (1967), "The tensile properties of single osteons", Anat. Rec., 158, 375-386. https://doi.org/10.1002/ar.1091580403.
  3. Bergmann, G. (2001), HIP98, Free University, 
  4. Berlin. Bonfield, W. and O'Connor, P. (1978), "Anelastic deformation and the friction stress of bone", J. Mater. Sci., 13, 202-207. https://doi.org/10.1007/BF00739292.
  5. Bousnane, T., Benbarek, S., Sahli, A., Serier, B. and Bouiadjra, B.A.B. (2018), "Damage of the bone-cement interface in finite element analyses of cemented orthopaedic implants", Periodica Polytechnica Mech. Eng., 62(2), 173-178. https://doi.org/10.3311/PPme.11851.
  6. Bouziane, M.M., Moulgada, A., Djebbara, N., Sahli, A., Bachir Bouiadjra, B.A. and Benbarek, S. (2015), "Effect of the residual stresses at the stem-cement interface on the mechanical behaviour of cemented hip femoral prosthesis", Int. J. Eng. Res. Africa, 17, 54-63. https://doi.org/10.4028/www.scientific.net/JERA.17.54.
  7. Chalernphon, K., Aroonjarattham, P., Aroonjarattham, K. and Somtua, C. (2018), "The The effect of static and dynamic loading on femoral bone using finite element analysis", J. Res. Appl. Mech. Eng., 6(2), 113-130.
  8. Chethan, K.N., Bhat, N.S., Zuber, M. and Shenoy, B.S. (2021), "Finite element analysis of hip implant with varying in taper neck lengths under static loading conditions", Comput. Meth. Progr. Biomed., 208, 106273. https://doi.org/10.1016/j.cmpb.2021.106273.
  9. Chethan, K.N., Zuber, M., Bhat, S.N. and Shenoy, S.B. (2020), "Optimized trapezoidal-shaped hip implant for total hip arthroplasty using finite element analysis", Cogent Eng., 7(1), 1719575. https://doi.org/10.1080/23311916.2020.1719575.
  10. Colic, K., Sedmak, A., Grbovic, A., Tatic, U., Sedmak, S. and Djordjevic, B. (2016), "Finite element modeling of hip implant static loading", Procedia Eng., 149, 57-62. https://doi.org/10.1016/j.proeng.2016.06.664.
  11. Currey, J.D. and Butler, G. (1975), "The mechanical properties of bone tissue in children", J. Bone. Joint. Surg. Am., 57(6), 810-814. https://doi.org/10.2106/00004623-197557060-00015
  12. Das, S.S., Chakraborti, P. and Bhowmik, C. (2018), "Modeling and numerical simulations of a MoP hip-prostheses using a novel Bio-Plastic material PTFE-glass composite", Int. J. Comput. Intel. IoT, 1(2), 1.
  13. El'Sheikh, H.F., MacDonald, B.J. and Hashmi, M.S.J. (2003), "Finite element simulation of the hip joint during stumbling: A comparison between static and dynamic loading", J. Mater. Proc. Technol., 143, 249-255. https://doi.org/10.1016/S0924-0136(03)00352-2.
  14. Fernandes, F.A.O. and de Sousa, R.J.A. (2013), "Finite element analysis of helmeted oblique impacts and head injury evaluation with a commercial road helmet", Struct. Eng. Mech., 48(5), 661-679. https://doi.org/10.12989/sem.2013.48.5.661.
  15. Goltz, D.E., Ryan, S.P., Hopkins, T.J., Howell, C.B., Attarian, D.E., Bolognesi, M.P. and Seyler, T.M. (2019), "A novel risk calculator predicts 90-day readmission following total joint arthroplasty", JBJS, 101(6), 547-556. https://doi.org/10.2106/jbjs.18.00843.
  16. GulshanTaj, M.N.A., Chakrabarti, A., Malathy, R. and Kumar, S.R.R.S. (2021), "Finite element analysis of functionally graded sandwich plates under nonlinear sense for aerospace applications", Struct. Eng. Mech., 80(3), 341-353. https://doi.org/10.12989/sem.2021.80.3.341.
  17. Guvercin, Y. and Yaylaci, M. (2023), "Biomechanical investigation of the effects of various treatment options on the talus in supination external rotation type 4 ankle injuries with ruptured deltoid ligament: Finite element analysis", Sakarya Med. J., 13(1), 62-69. https://doi.org/10.31832/smj.1220996.
  18. Guvercin, Y., Abdioglu, A.A., Dizdar, A., Uzun Yaylaci, E. and Yaylaci, M. (2022), "Suture button fixation method used in the treatment of syndesmosis injury: A biomechanical analysis of the effect of the placement of the button on the distal tibiofibular joint in the mid-stance phase with finite elements method", Injury, 53(7), 2437-2445. https://doi.org/10.1016/j.injury.2022.05.037.
  19. Guvercin, Y., Yaylaci, M., Dizdar, A., Kanat, A., Uzun Yaylaci, E., Ay, S., Abdioglu, A.T. and Sen, A. (2022a), "Biomechanical analysis of odontoid and transverse atlantal ligament in humans with ponticulus posticus variation under different loading conditions: finite element study", Injury, 53(12), 3879-3886. https://doi.org/10.1016/j.injury.2022.10.003.
  20. Guvercin, Y., Yaylaci, M., Olmez, H., Uzun Yaylaci, E., Ozdemir, M.E. and Dizdar, A. (2022b), "Finite element analysis of the mechanical behavior of the different angle hip femoral stem", Biomater. Biomech. Bioeng., 6(1), 29-46. https://doi.org/10.12989/bme.2022.6.1.029.
  21. Joshi, T., Sharma, R., Mittal, V.K., Gupta, V. and Krishan, G. (2022), "Dynamic analysis of hip prosthesis using different biocompatible alloys", ASME Open J. Eng., 1, 011001. https://doi.org/10.1115/1.4053417.
  22. Kladovasilakis, N., Tsongas, K. and Tzetzis, D. (2020), "Finite element analysis of orthopedic hip implant with functionally graded bioinspired lattice structures", Biomimet., 5(3), 44. https://doi.org/10.3390/biomimetics5030044.
  23. Lazzari, P.M., Filho, A.C., Lazzari, B.M., Pacheco, A.R. and Gomes, R.R.S. (2019), "Numerical simulation of the constructive steps of a cable-stayed bridge using ANSYS", Struct. Eng. Mech., 69(3), 269-281. https://doi.org/10.12989/sem.2019.69.3.269.
  24. Marquis, P. (1945), Etudes Sur le Femur, Bruxelles, Stoop.
  25. Mohamed, C., Abderahmane, S. and Benbarek, S. (2018), "Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement", Struct. Eng. Mech., 66(1), 37-43. https://doi.org/10.12989/sem.2018.66.1.037.
  26. Mohamed, C., Smail, B., Bouiadjra, B. and Serier, B. (2016), "Numerical modeless of the damage, around inclusion in the orthopedic cement PMMA", Struct. Eng. Mech., 57(4), 717-731. https://doi.org/10.12989/sem.2016.57.4.717.
  27. Monea, A.G., Pastrav, L.C., Mulier, M., Van der Perre, G. and Jaecques, S.V. (2014), "Numerical simulation of the insertion process of an uncemented hip prosthesis in order to evaluate the influence of residual stress and contact distribution on the stem initial stability", Comput. Meth. Biomech., 17(3), 263-276. https://doi.org/10.1080/10255842.2012.681644.
  28. Moulgada, A., Bouziane, M.M., Bouiadjra, B.B., Benbarek, S., Albedah, A. and Achour, T. (2014), "Finite element simulation of stress distribution in the different components of Ceraver-Osteal hip prosthesis: static and dynamic analysis", Mechanika, 20(5), 452-459. https://doi.org/10.5755/j01.mech.20.5.5372.
  29. Nisanci, G.N., Guvercin, Y., Ates, S.M., Olmez, H.,Uzun Yaylaci, E. and Yaylaci, M., (2020), "Investigation of the effect of different prosthesis designs and numbers on stress, strain and deformation distribution", J. Eng. Appl. Sci., 12(4), 138-152. https://doi.org/10.24107/ijeas.816227.
  30. Ozdemir, M.E. and Yaylaci M, (2023), "Research of the impact of material and flow properties on fluid-structure interaction in cage systems", Wind Struct., 36(1), 31-40. https://doi.org/10.12989/was.2023.36.1.031
  31. Patra, R., Jena, S., Das, H.C. and Rath, A.K. (2022), "Finite element analysis of femoral prosthesis under transient loading for multiple activities of daily living", Biomed. Eng.-Appl. Bas. Commun., 34(2), 2250016. https://doi.org/10.4015/S1016237222500168.
  32. Pop, T., Szymczyk, D., Majewska, J., Bejer, A., Baran, J., Bielecki, A. and Rusek, W. (2018), "The assessment of static balance in patients after total hip replacement in the period of 2-3 years after surgery", Biomed Res. Int., 2018, Article ID 3707254. https://doi.org/10.1155/2018/3707254.
  33. Prabowo, A.R., Sohn, J.M. and Triyono, J. (2020), "Finite element analysis of different artificial hip stem designs based on fenestration under static loading", Procedia Struct. Integr., 27, 101-108. https://doi.org/10.1016/j.prostr.2020.07.014.
  34. Qu, C. and Qin, Q.H. (2006), "Evolution of bone structure under axial and transverse loads", Struct. Eng. Mech., 24(1), 19-29. https://doi.org/10.12989/sem.2006.24.1.019.
  35. Sahli, A., Benbarek, S., Wayne, S., Bachir Bouiadjra, B. A., and Serier, B. (2014), "3D crack behavior in the orthopedic cement mantle of a total hip replacement", Appl. Bionic. Biomech., 11(3), 135-147. https://doi.org/10.3233/ABB-140097.
  36. Tabeshpour, M.R. and Arasteh, A.M. (2019), "A new method for infill equivalent strut width", Struct. Eng. Mech., 69(3), 257-268. https://doi.org/10.12989/sem.2019.69.3.257.
  37. Terzi, M., Guvercin, Y., Ates, S.M., Sekban, D.M. and Yaylaci, M. (2020), "Effect of different abutment mateiials on stress distribution in peripheral bone and dental implant system". Sigma J. Eng. Nat. Sci., 38(3), 1515-1527.
  38. Turan, M., Uzun Yaylaci, E. and Yaylaci, M. (2023), "Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods", Arch. Appl. Mech., 93, 1351-1372. https://doi.org/10.1007/s00419-022-02332-w
  39. Wesseling, M., Meyer, C., Corten, K., Desloovere, K. and Jonkers, I. (2018), "Longitudinal joint loading in patients before and up to one year after unilateral total hip arthroplasty", Gait Post., 61, 117-124. https://doi.org/10.1016/j.gaitpost.2018.01.002.
  40. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022c), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch. Appl. Mech., 92, 1953-1971. https://doi.org/10.1007/s00419-022-02159-5.
  41. Yaylaci, M., Sengul Sabano, B., Ozdemir, M.E. and Birinci, A. (2022b), "Solving the contact problem of functionally graded layers resting on a homogeneous half-plane and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
  42. Yaylaci, M., Uzun Yaylaci, E., Ozdemir, M.E., Ay, S. and Ozturk, S. (2022a), "Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack", Steel Compos. Struct., 45(4), 501-511. https://doi.org/10.12989/scs.2022.45.4.501.
  43. Yaylaci, M., Uzun Yaylaci, E., Ozdemir, M.E., Ozturk, S. and Sesli, H. (2023), "Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods", Steel Compos. Struct., 46(4), 565-575. https://doi.org/10.12989/scs.2023.46.4.565.
  44. Zagane, M.E.S., Benouis, A., Moulgada, A., Djebbar, N. and Sahli, A. (2020), "Biomechanical behaviour of the total hip prosthesis subjected to normal gait cycle load: Identification of the damage in the cement mantle", J. Serb. Soc. Comput. Mech., 14(2), 14-30. https://doi.org/10.24874/jsscm.2020.14.02.02.
  45. Zagane, M.E.S., Sahli, A., Benouis, A. and Benbarek, S. (2017), "Numerical simulation of the femur fracture for different cemented hip femoral prosthesis under forces during stumbling", CFM 2017-23eme Congres Francais de Mecanique, Maison de la Mecanique, 39/41 rue Louis Blanc-92400 Courbevoie.
  46. Zimmermann, R. (1976), "Osteosynthese par plaque. Etude experimentale des contraintes", These de Medecine n°3 07, Bordeaux.