• 제목/요약/키워드: static & dynamic characteristics

검색결과 1,164건 처리시간 0.027초

자동차 공기스프링의 특성에 대한 실험적 고찰 (An Experimental Investigation on the Characteristics of An Automotive Air Spring)

  • 이재천;류하오
    • 유공압시스템학회논문집
    • /
    • 제8권2호
    • /
    • pp.17-22
    • /
    • 2011
  • The analysis of an air spring characteristics is necessary to design and control automotive air suspension system properly. A mathematical model of an air spring was derived in light of energy conservation first. Then static and dynamic experiments of the air spring have been fulfilled. The static stiffness with various initial pressures and effective areas were obtained from the static experimental results. Theoretical static stiffness obtained by using the mathematical model and effective area data is in close accordance with the experimental estimation. The dynamic experimental results show that the hysteresis in displacement-force cycle decreases when the frequency of the harmonic displacement excitation signal increases, but it does not change too much as the frequency is higher than 1Hz. And the dynamic stiffness goes up with increasing of the initial pressure and the excitation frequency.

굴삭기의 정적/동적 응력 및 구동 특성 계측 (Measurement of Static and Dynamic Stress and Motion Characteristics of Excavators)

  • 김규성;정준모;장영식;최익흥;이준희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.473-478
    • /
    • 2003
  • This paper presents static and dynamic measurement of the stress and motion characteristics for crawler type excavators. Eight scenarios were prepared for static measurement based on two extreme digging positions, maximum digging reach position and maximum digging force position. The measured items for static motion included stress, cylinder pressure, cylinder stroke and digging force. The measured static stresses showed that asymmetric digging force acting on a bucket induced higher stress level than symmetric one. The measured static pressures and digging forces also agreed with design pressures and design digging forces, respectively. The dynamic measurement was performed for two types of motion, that is, simple reciprocation of each cylinder and actual digging motion. The measured items for dynamic motion were stroke and pressure of each cylinder, stresses on the working device and acceleration on the upper plate of an arm. The measured data showed that the natural frequency of the excavator highly depended on the hydraulic stiffness of cylinders. Digging motion tests revealed that digging motion was closer to static motion rather than dynamic one.

  • PDF

진원형 정수압 베어링의 해석 및 실험적 고찰 (Analysis and Experimental Investigation of Cylindrical Hydrostatic Bearing)

  • 문호지;한동철
    • Tribology and Lubricants
    • /
    • 제6권1호
    • /
    • pp.57-67
    • /
    • 1990
  • For increasing the performance of Machine tools, the improvement of the static and dynamic characteristics of spindle bearing is important. In this paper are the static characteristics, the pressure distribution, friction force and outlet flow rate, and the dynamic characteristics stiffness and damping coefficient, of a cylindrical hydrostatic journal bearing with multi oil pockets are analyzed.

3원호 미끄럼 베어링을 적용한 공작기계 주축계의 정적 및 동적 특성 해석시스템 개발 (Development of a Static and Dynamic Characteristics Analysis System for Machine -Tool Spindle Systems with 3 Lobe Sliding Bearings)

  • 조재완
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.99-107
    • /
    • 2000
  • In this study, a static and dynamic characteristics analysis system for machine tool spindle systems with 3 lobe sliding bearing is developed based on Timoshenko theory, finite element method and windows programming techniques. And the characteristics value of 3 lobe sliding bearing such as eccentricity ratio, attitude angle, friction coefficient , stiffness coefficients, damping coefficients and so on, are determined by using the thermal equilibrium conditions of spindle systems. Since the developed system has various analysis modules related to static deformation analysis, modal analysis, frequency responses analysis and so on, it can be utilized to perform systematically the design an devaluation process of spindle systems with 3 lobe sliding bearing under windows GUI environment.

  • PDF

Dynamic and static structural displacement measurement using backscattering DC coupled radar

  • Guan, Shanyue;Rice, Jennifer A.;Li, Changzhi;Li, Yiran;Wang, Guochao
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.521-535
    • /
    • 2015
  • Vibration-based monitoring is one approach used to perform structural condition assessment. By measuring structural response, such as displacement, dynamic characteristics of a structure may be estimated. Often, the primary dynamic responses in civil structures are below 5 Hz, making accurate low frequency measurement critical for successful dynamic characterization. In addition, static deflection measurements are useful for structural capacity and load rating assessments. This paper presents a DC coupled continuous wave radar to accurately detect both dynamic and static displacement. This low-cost radar sensor provides displacement measurements within a compact, wireless unit appropriate for a range of structural monitoring applications. The hardware components and operating mechanism of the radar are introduced and a series of laboratory experiments are presented to assess the performance characteristics of the radar. The laboratory and field experiments investigate the effect of factors such as target distance, motion amplitude, and motion frequency on the radar's measurement accuracy. The results demonstrate that the radar is capable of both static and dynamic displacement measurements with sub-millimeter accuracy, making it a promising technology for structural health monitoring.

실내디자인의 지각적 프리젠테이션 방법의 특성에 관한 연구 (A Study on Characteristics of Perceptual Presentation Methods of Interior Design)

  • 이종란
    • 한국실내디자인학회논문집
    • /
    • 제28호
    • /
    • pp.265-265
    • /
    • 2001
  • The perceptual presentation of interior design is to represent an interior space planned by a designer as if people see it in reality. The perceptual presentation methods that have developed are perspectives, full-scale models, small-scale models, photography of models, video taping of models, computer images, computer animation, and virtual reality. The purpose of this study is to investigate limits of those perceptual presentation methods according to their characteristics. The methods have characteristics that are either static or dynamic and either monoscopic or stereoscopic. In terms of representing interior spaces and perceiving interior spaces, the dynamic characteristic is more helpful than the static characteristic because the dynamic characteristic provides consecutively changing views of interior spaces when people walk around within the spaces. The stereoscopic characteristic is more helpful than the monoscopic characteristic because the stereoscopic characteristic provides the binocular depth perception. Full-scale models, small-scale models, virtual reality that have dynamic and stereoscopic characteristics, are most effective. The next effective methods are video taping of models and computer animation that have dynamic and monoscopic characteristics. The last effective methods are perspectives and photography of models that have static and monoscopic characteristics. But the most effective methods can not be said that those are perfect because each of them still has limits. Designers have to consider the limits of each perceptual presentation method to find a way that shows their designs most effectively. To develop the perceptual presentation methods of interior design, researchers should focus on the helpful characteristics that are dynamic and stereoscopic.

실내디자인의 지각적 프리젠테이션 방법의 특성에 관한 연구 (A Study on Characteristics of Perceptual Presentation Methods of Interior Design)

  • 이종란
    • 한국실내디자인학회논문집
    • /
    • 제29호
    • /
    • pp.265-272
    • /
    • 2001
  • The perceptual presentation of interior design is to represent an interior space planned by a designer as if people see it in reality. The perceptual presentation methods that have developed are perspectives, full-scathe models, small-scale models, photography of models, video taping of models, computer images, computer animation, and virtual reality. The purpose of this study is to investigate limits of those perceptual presentation methods according to their characteristics. The methods have characteristics that are either static or dynamic and either monoscopic or stereoscopic. In terms of representing interior spaces and perceiving interior spaces, the dynamic characteristic is more helpful than the static characteristic because the dynamic characteristic provides consecutively changing views of interior spaces when people walk around within the spaces. The stereoscopic characteristic is more helpful than the monoscopic characteristic because the stereoscopic characteristic provides the binocular depth perception. Full-scale models, small-scale models, virtual reality that have dynamic and stereoscopic characteristics, are most effective. The next effective methods are video taping of models and computer animation that have dynamic and monoscopic characteristics. The last effective methods are perspectives and photography each of models that haute static and monoscopic characteristics. But the most effective methods can nut be said that those are perfect because each of them still has limits. Designers have to consider the limits of each perceptual presentation method to find a way that shows their designs most effectively. To develop the perceptual presentation methods of interior design, researchers should focus on the helpful characteristics that are dynamic and stereoscopic.

  • PDF

태양열 이용 공조시스템의 동특성 해석 (Dynamic Characteristic Analysis of Air-Conditioning System Using Solar Energy)

  • 김재돌
    • 태양에너지
    • /
    • 제19권3호
    • /
    • pp.75-83
    • /
    • 1999
  • The optimum drive control method have to be developed to exhibit the use object contributed trust, accuracy, amenity and energy save of product. To develop the optimum drive control method is, first, grasped the static characteristics for the entire system combined each element which consists the machine and performed the dynamic characteristics explanation based on the satisfied result which acquires at the static characteristics explanation. According to this explanation, the response of the system shows same characteristics tendency and the increasing same quantify comparing to response change of each element. So the dynamic response of the entire system shows different. Therefore this study performs the static and the dynamic characteristic explanation of entire system and each element for using air-conditioning system of solar energy based on the performed result from now on, so for application of this result.

  • PDF

공기윤활 빗살무늬 저널베어링의 부하특성에 대한 유한요소해석 (An Analysis of Load Characteristics of Air-Lubricated Herringbone Groove Journal Bearing By Finite Element Method)

  • 박신욱;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.353-362
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. In this study, static and dynamic compressible isothermal lubrication problems are analyzed by the finite element method together with the Newton-Raphson iterative procedure. This analysis is introduced for prediction of the static and dynamic characteristics of air lubricated HGJB for various bearing configurations. The bearing load characteristics and dynamic characteristics are dependent on geometric parameters such as asymmetric ratio, groove depth ratio, groove width ratio and groove angle.

  • PDF

등가정하중을 이용한 유연다물체 동역학계의 구조최적설계 (Optimization of Flexible Multibody Dynamic Systems Using Equivalent Static Load Method)

  • 강병수;박경진
    • 대한기계학회논문집A
    • /
    • 제28권1호
    • /
    • pp.48-54
    • /
    • 2004
  • Generally, structural optimization is carried out based on external static loads. All forces have dynamic characteristics in the real world. Mathematical optimization with dynamic loads is extremely difficult in a large-scale problem due to the behaviors in the time domain. In practical applications, it is customary to transform the dynamic loads into static loads by dynamic factors, design codes, and etc. But the optimization results with the unreasonably transformed loads cannot give us good solutions. Recently, a systematic transformation has been proposed as an engineering algorithm. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. Thus, many load cases are used as the multiple loading conditions which are not costly to include in modem structural optimization. In this research, the proposed algorithm is applied to the optimization of flexible multibody dynamic systems. The equivalent static load is derived from the equations of motion of a flexible multibody dynamic system. A few examples that have been solved before are solved to be compared with the results from the proposed algorithm.