• Title/Summary/Keyword: state of stress

Search Result 2,839, Processing Time 0.029 seconds

Change of Heart Rate Variability in Depressive Disorder after Physical or Psychological Stress (우울장애 환자에서 육체적 및 정신적 스트레스 시 심박변이도의 변화)

  • Lee, Jong-Hwa;Yu, Jaehak;Ryu, Seung-Ho;Ha, Ji-Hyeon;Jeon, Hong-Jun;Park, Doo-Heum
    • Sleep Medicine and Psychophysiology
    • /
    • v.25 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • Objectives: This study was designed to assess the change of heart rate variability (HRV) at resting, upright, and psychological stress states in depressive disorder patients. Methods: HRV was measured at resting, upright, and psychological stress states in 62 depressive disorder patients. We used visual analogue scale (VAS) score to assess tension and stress severity. Beck depression inventory (BDI) and state trait anxiety inventories I and II (STAI-I and II) were used to assess depression and anxiety severity, respectively. Differences between HRV indices and VAS score were evaluated using paired t-tests. Gender difference analysis was conducted with ANCOVA. Results: SDNN (standard deviation of normal to normal intervals), LF/HF (low frequency/high frequency), and VLF (very low frequency) were significantly increased, while NN50 and pNN50 were significantly decreased in the upright position compared to resting state. SDNN, RMSSD (root mean square of the differences of successive normal to normal intervals), and VLF were significantly increased, while pNN50 was significantly decreased in the psychological stress state compared to resting state. SDNN, NN50, and pNN50 were significantly lower in an upright position compared to a state of psychological stress, and LF, HF, and LF/HF showed no significant differences Conclusion: The LF/HF ratio was significantly increased after physical stress in depressive disorder. However, the LF/HF ratio was not significantly increased after psychological stress, and the change in LF/HF ratio after physical stress and psychological stress did not significantly differ from each other. Significant increase in SDNN, NN50, and pNN50 in an upright posture compared to psychological stress suggests that depressive patients react more sensitively to physical stress than psychological stress.

High Temperature Creep Behavior of Cr3C2 Composites (크롬-카바이드 복합체의 고온 크리프 거동)

  • 김지환;한동빈;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1219-1226
    • /
    • 1995
  • Creep behaviors of Cr3C2 composites containing 90 wt% Cr3C2 and 10 wt% Ni were studied at high temperature. Compression tests at 100$0^{\circ}C$ and bending tests at 100$0^{\circ}C$ and 105$0^{\circ}C$ were done in argon environment. In all test conditions primary and steady-state creep behaviors were observed. Stress exponent and activatiion energy were determined from the experimental data. By microstructural analysis of Cr3C2 composites after creep test, the separate agglomerations of Ni phase were observed. Numerical analysis was also studied to analyze bending creep behaviors of Cr3C2 by assumming different tensile and compressive creep behavior in a bending sample. From the analysis, it was found that the stress state at the compressive region as applied stress increased. The observed creep rates were compared with the predicted creep rates by estimating power-law creep parameters from bending test data.

  • PDF

Effect of Creep Mismatch Factor on Stress Redistribution in Welded Branch (분기관 용접부의 크리프 특성 불균일이 응력 재분배에 미치는 영향)

  • Lee, Kuk-Hee;Kim, Yun-Jae;Yoo, Kee-Bong;Nikbin, Kamran;Dean, Dave
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.293-298
    • /
    • 2008
  • This paper attempts to quantify the effect of mismatch in creep properties on steady-state stress distributions for a welded branch vessel. A particular geometry for the branch vessel is chosen. The vessel is modeled by only two materials, the base and weld metal. Idealized power law creep laws with the same creep exponents are assumed for base and weld metals. A mismatch factor is introduced, as a function of the creep constant and exponent. Steady-state stress distributions within the weld metal, resulting from threedimensional, elastic-creep finite element (FE) analyses, are then characterized by the mismatch factor. We can find that average stresses in the weld can be characterized by the mis-match factor. And there is an analogy between elastic-creep and elastic-perfectly plastic.

  • PDF

Contact Fatigue Life Prediction under Elliptical Elastohydrodynamic Lubrication (타원접촉 EHL 상태에서의 접촉피로수명 예측)

  • Kim, Tae-Wan;Lee, Sang-Don;Koo, Young-Pil;Cho, Yang-Joo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.320-328
    • /
    • 2006
  • In this study, the simulation of rolling contact fatigue based on stress analysis is conducted under Elastohydrodynamic Lubrication state. To predict a crack initiation life accurately, it is necessary to calculate contact stress and subsurface stresses accurately. Contact stresses are obtained by contact analysis of a semi-infinile solid based on the use of influence functions and the subsurface stress field is obtained using rectangular patch solutions. And a numerical algorithm using Newton-Rapson method was constructed to calculate the Elastohydrodynamic lubrication pressure. Based on these stress values, several multiaxial high-cycle fatigue criteria are used and the critical loads corresponding to fatigue limits are calculated.

A Study on the Characteristics of Heat Distribution of Welded Joint on the Steel Structure with Thick Plate (厚板 鋼構造物 熔接이음부의 熱分布 特性에 關한 硏究)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.138-144
    • /
    • 1995
  • Recently, as the industrial structure tends to become large, the thickness of structural plate becomes thicker. Therefore, the thicker the plate of welded structure is, the larger the shape of welded joint. The effect of large heat input makes large heat affected zone(HAZ). These bring to complict welding residual stress and to weaken material, which may cause extremely harm to the safety of structures. Nevertheless, welding is design is regulated by the KS, JIS or standard in the resister of shipping such as KR, ABS or LR. However, these rules are based on rather experimental than theoretical. In this study, the computer program of heat conduction, considering un-steady state and quasi-steady state, is developed for optimizing(minimizing) a shape of welded joint. The characteristics of heat on the welded joints with various shapes are clarified by the results of the analyses.

  • PDF

Shear Strength of Fine Sand -Curvature Characteristics of Failure Envelope and Stress Parameter- (가는 모래의 전단강도 -파괴포락선의 곡률특성과 상태정수에 관하여-)

  • Yoon, Yeo Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.195-202
    • /
    • 1994
  • In this research, a lot of triaxial test results (CID) are analyzed to study the curvature characteristics of failure envelope of sand and parametric relationship between shear strength and state parameter by Been and Jefferies. In the conventional triaxial tests, correction for the change of sectional area of a sample and for membrane influence is essential especially in order to determine critical state (or steady state) condition more correctly. Based on the test results, a model to express the shear strength of fine sand as a function of density and stress level is presented and curvature characteristics of shear failure envelope and parametric relationship between state parameter and shear strength parameters are evaluated.

  • PDF

An approach for modelling fracture of shape memory alloy parts

  • Evard, Margarita E.;Volkov, Alexander E.;Bobeleva, Olga V.
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.357-363
    • /
    • 2006
  • Equations describing deformation defects, damage accumulation, and fracture condition have been suggested. Analytical and numerical solutions have been obtained for defects produced by a shear in a fixed direction. Under cyclic loading the number of cycles to failure well fits the empirical Koffin-Manson law. The developed model is expanded to the case of the micro-plastic deformation, which accompanies martensite accommodation in shape memory alloys. Damage of a shape memory specimen has been calculated for two regimes of loading: a constant stress and cyclic variation of temperature across the interval of martensitic transformations, and at a constant temperature corresponding to the pseudoelastic state and cyclic variation of stress. The obtained results are in a good qualitative agreement with available experimental data.

The Equilibrium Solution and the Stability Analysis of Reynolds Stress Equations for a Homogeneous Turbulent Shear Flow (난류 균일전단유동에 대한 레이놀즈 응력 모형방정식의 평형해와 안정성 해석)

  • 이원근;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.820-833
    • /
    • 1995
  • An analysis is performed to examine the equilibrium state and the stability of modeled Reynolds stress equations for homogeneous turbulent shear flows. The system of the governing equations consists of four coupled ordinary differential equations. The equilibrium states are found by the steady state solution of the governing equations. In order to investigate the stability of the system about its state in equilibrium, and eigenvalue problem is constructed. As a result, constraints for the coeffieients in the model equations are obtained by the stability condition of the equilibrium state as well as by their physically realizable bounds. It is observed that the models with pressure-strain rate correlation that are linear in the anisotropy tensor are stable and produce reasonable equilibrium tensor do not behave properly. Stability considerations about three most commonly used models are given in detail in the final section.

Study on the Interface State Density of MNS Diode by the Conductance Method. (Conductance 법에 의한 MNS Diode 의 계면상태에 관한 고찰)

  • Sung, Yung-Kwon;Choi, Jong-Il;Lee, Nae-In
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.346-349
    • /
    • 1988
  • Conductance technique is the moat accurate method and gives more detailed information about interface of the MIS structure than other methods. With the measurement of the equivalent parallel conductance and capacitance, the characterization of Si-SiN interface is developed. The interface state density of Si-SiN is obtained by $8{\times}10^{11}$ - $6{\times}10^{12}(eV^{-1}cm^{-2}$). After the positive B-T stress is performed on the sample, the interface state density gets increased. The interface state density is not effected by the D.C. stress.

  • PDF