References
- Belyaev, S. P., Kuzmin, S. L., Likhachev, V. A. and Kovalev, S. M. (1987), 'Deformation and fracture of titanium nickelide under thermocycles and stress', Fizika Metallov i Metalloved, 63(5), 1017-1023 (in Russian)
- Friedel, J. (1964), Dislocations, Pergamon Press, Oxford
- Hirth, J. P. and Lothe, J. (1968), Theory of Dislocations, McGraw-Hill, New York
- Kim, Y. S. and Miyazaki, S. (1997), 'Fatigue properties of Ti-50.9at%Ni shape memory wires', Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies SMST-97, Asilomar, USA, March, p.473-478
- MANSIDE Project (1999), 'Memory alloys for new seismic isolation and energy dissipation devices', Workshop Proceedings, Rome, January
- Popov, L. E., Pudan, L. Ya., Kolupaeva, S. N., Kobytev, V. S. and Starenchenko, V. A. (1990), Mathematical Modelling of Plastic Deformation, Tomsk State Univ. Publ. House, Tomsk. (in Russian)
- Volkov, A. E. (2002), 'Microstructural modeling of the deformation of shape memory alloys at repeated martensitic transformations', Izv. Akad. Nauk. Ser. Fizicheskaya, 66(9), 1290-1297 (in Russian)
- Volkov, A. E. and Casciati, F. (2001), 'Simulation of dislocation and transformation plasticity in shape memory alloy polycrystals', Shape Memory Alloys. Advances in Modelling and Applications, F. Auricchio, L. Faravelli, G. Magonette and V. Torra (eds.) Barcelona, p. 88-104
Cited by
- Microstructural modelling of plastic deformation and defects accumulation in FeMn-based shape memory alloys vol.2, 2016, https://doi.org/10.1016/j.prostr.2016.06.196
- Simulation of Payload Vibration Protection by Shape Memory Alloy Parts vol.23, pp.7, 2014, https://doi.org/10.1007/s11665-014-1084-7