• Title/Summary/Keyword: state feedback controller

Search Result 676, Processing Time 0.024 seconds

The Attitude Control of The Double Inverted Pendulum with Periodic Upper Disturbance (주기적인 상부 외란이 인가되는 2축 도립 진자의 자세 제어)

  • Nam, Row-Hyun;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2309-2311
    • /
    • 1998
  • The attitude control of a double inverted pendulum with a periodical disturbance at link top is dealt in this paper. The proposed system is consisted of the double inverted pendulum and a disturbance link. The lower link is hinged on the plate to free for rotation in the vertical plane. The upper link is connected to the lower link through a DC motor. The DC motor is used to control the posture of the pendulum by adjusting the position of the upper link. The periodical disturbance can be generated by the additional link attached at the end of link 2 through another DC motor, which is the modeling of a posture for a biped supporting with one leg. The motor for the joint simulates the knee joint(or hip joint) and the disturbance for the legs moving in air. The algorithm for controlling a proposed inverted pendulum is consisted of a state feedback control and a fuzzy logic controller. The fuzzy controller keeps the center of gravity of the biped within the specified range through the nonlinear feedback compensator. The state feedback control takes over the role to maintain a desired posture regardless the disturbance at the link top. In these case, the change of the angle and COG of an upper link is compensated with on-line. Simulations with a mathematical model are conducted to show the validity of the proposed controller.

  • PDF

Output Feedback Sliding Mode Control System with Disturbance Observer for Rotational Inverted Pendulums (외란 관측기를 이용한 회전형 역진자 시스템의 출력 피드백 슬라이딩 모드 제어)

  • Lee, Gyu-Jun;Ha, Jong-Heon;Kim, Jong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.243-253
    • /
    • 2002
  • This paper presents the system modeling, analysis, and controller design and implementation for a rotational inverted pendulum system(RIPS), which is an under-actuated system and has the problem of unattainable angular velocity state. A sliding mode controller using the parameterization of both the hyperplane and the compensator fur output feedback is applied to the RIPS. Also, to improve the performance of the control system, a disturbance observer which estimates the disturbance, parameter variation, and some modeling errors of RIPS with less computational effort is used together. The results of simulation and experiment show that the proposed control system has superior performance for disturbance rejection and regulation at certain initial conditions.

Robust Control of Pressure Control System Using Direct Drive Valve (DDV를 이용한 압력 제어시스템의 강인제어)

  • Lee Chang-Don;Park Sung-Hwan;Lee Jin-Kul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1077-1082
    • /
    • 2005
  • In this paper, it is proposed that the method for constituting pressure control system controlled by Direct Drive Valve (DDV). The DDV has a pressure-feedback-loop itself. It can eliminate non-linearity and uncertainty oi hydraulic system such as uncertain discharge coefficient and change of bulk-modulus. However, the internal feedback-loop can not compensate them perfectly. And fixed gain of the DDV's internal feedback-loop is not proper to apply it through wide pressure range. The steady state error and nonlinear characteristic of transient behaviour is observed in the experiment. So another controller is needed for the desirable performance of the system. To compose the controller, the pressure control system controlled by DDV is modeled mathematically and the parameters of the model are identified using signal-compression method. Then sliding mode controller is designed based on mathematical model. Desirable performance of the pressure control system controlled by DDV is obtained.

Development of Controller for EMS System using Nonlinear Feedback Linearization, regarding Uncertainty of System (시스템의 불확실성을 고려한 자기부상 시스템의 비선형 궤환 선형화 제어기)

  • Byun, Ji-Joon;Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.345-347
    • /
    • 1993
  • It is known that Feedback linearization has important limitations-the full state has to be measured; no robustness is guaranteed with respect to parameter uncertainty and unmodeled dynamics. In this paper, we construct a nonlinear feedback linearization controller for the system containing uncertain parameters and unknown states, in the case of EMS system with rail vibration. Performance of this controller is demonstrated by computer simulation.

  • PDF

Gain Optimization by Using Genetic Algorithm for Magnetic Levitation Controller (유전 알고리즘을 이용한 자기부상 제어기의 게인 최적화)

  • Kim, Jong-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1327-1329
    • /
    • 2005
  • This paper presents a gam optimization method using genetic algorithm(GA) for a magnetic levitation(Maglev) controller. GA uses the integral of square error(ISE) as performance index. The plant dynamics are described and modelled by mathematical equations. Also, the system apparatus for the Maglev system are described. Using the derived model, to optimize the feedback gains of conventional state feedback controller(SFC), GA is simulated with SIMULINK model. finally, using the optimized feedback gains, SFC is applied to the Maglev system. From the results, we can see that GA can give a solution for the better control performance for the Maglev system.

  • PDF

Swing-up and Stabilization Control of a SESIP System (SESIP 시스템의 스윙업과 안정화 제어)

  • So, Myung-Ok;Yoo, Heui-Han;Ryu, Ki-Tak;Lee, Yun-Hyung;Lee, Jong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.310-317
    • /
    • 2010
  • In this paper, we propose a method for swing-up and stabilization of a SESIP(Self-Erecting Single Inverted Pendulum) system which is one of the typical nonlinear systems. We use PV(Proportional velocity) controller for swinging up the pendulum and employ a PI-type state-feedback controller for stabilizing the pendulum. Control is switched to a stabilizing controller, which is designed to balance the inverted position of pendulum and the cart position to the near vertical position. Computer simulations are performed to illustrate the control performance of the proposed scheme.

Design of T-S Fuzzy Model based Adaptive Fuzzy Observer and Controller

  • Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.9-21
    • /
    • 2009
  • This paper proposes the alternative observer and controller design scheme based on T-S fuzzy model. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given unknown nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. The proposed controller is based on a simple output feedback method. Therefore, it solves the singularity problem, without any additional algorithm, which occurs in the inverse dynamics based on the feedback linearization method. The adaptive fuzzy scheme estimates the parameters and the feedback gain comprising the fuzzy model representing the observation system. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observer and controller, they are applied to an inverted pendulum on a cart.

Active Noise Control in a Duct System Using the Hybrid Control Algorithm (하이브리드 제어 알고리즘을 이용한 덕트내 능동소음제어)

  • Lee, You-Yub;Park, Sang-Gil;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.288-293
    • /
    • 2009
  • This study presents the active noise control of duct noise. The duct was excited by a steady-state harmonic and white noise force and the control was performed by one control speaker attached to surface of the duct. An adaptive controller based on filtered x LMS(FXLMS) algorithm was used and controller was defined by minimizing the square of the response of the error microphone. The assemble controller, which is called a hybrid ANC(active noise control) system, was combined with feedforward and feedback controller. The feedforward ANC attenuates primary noise that is correlated with the reference signal, while the feedback ANC cancels the narrowband components of the primary noise that are not observed by the reference sensor. Furthermore, in many ANC applications, the periodic components of noise are the most intense and the feedback ANC system has the effect of reducing the spectral peaks of the primary noise, thus easing the burden of the feedforward ANC filter.

A Study on Yaw Control of Multi-Fan Hovering with SRFIMF (SRFIMF를 이용한 멀티팬 부상기의 YAW제어에 관한 연구)

  • 박선국;최부귀
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.4
    • /
    • pp.361-370
    • /
    • 1992
  • A controller of the hovering VTOL aircraft with four fan is constructed by SRFIMF(State Rate Feedback Implicit Model-Following)theory, in which feedback state are angle acceleration, angle velocity and angle position of the aircraft during hover With yaw control of the system, characteristics of the hovering aircraft can be analyzed by changing states feedback gain and sponse provides robust stable hovering system.

  • PDF

Implement Concentration Neuro-Feedback Game using Gun-Shooting Game (건-슈팅 게임을 응용한 집중력 뉴로피드백 게임 구현)

  • Kim, Hyung-Min;Lee, Daniel-Juhun;Park, So-Youn;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.285-290
    • /
    • 2020
  • Neuro-feedback is a technology that can identify your brain state and you can intentionally change your brain state. People with attention deficit and hyperactivity disorder need this technology but existing neuro-feedback training has a problem, which is not interesting and maintains a static state for a long time. In this paper, we proposed and implemented a neuro-feedback game that combines neuro-feedback and gun-shooting games to enhance concentration training. The neuro-feedback game has been implemented with the design of EEG measurement system, game controller and gamesoft. We hope that this study will be useful for people suffering from attention deficit and hyperactivity disorder.