• 제목/요약/키워드: state dependent Riccati equation

검색결과 26건 처리시간 0.028초

SDRE 기법을 이용한 위성 각속도 추정용 비선형 관측기 설계 (Nonlinear Observer Design for Satellite Angular Rate Estimation by SDRE Method)

  • 진재현
    • 한국항공우주학회지
    • /
    • 제42권10호
    • /
    • pp.816-822
    • /
    • 2014
  • 위성의 각속도를 추정하는 비선형 관측기의 설계방법을 제안한다. SDRE 기법을 이용하여 관측기를 설계하는데, 오차 수렴에 대한 충분조건을 제시하였다. 대수 Riccati 형태의 이 조건은, 비선형 항을 Lipschitz 형태로 변환하고 이에 대한 수렴 조건을 유도하여 구해진다. 이 조건으로부터 관측기의 게인을 구할 수 있으며, 시뮬레이션을 이용하여 제안한 방법을 검증하였다.

SDRE 기법을 이용한 헬리콥터 비선형 최적제어기 설계 연구 (Research on the Design of Helicopter Nonlinear Optimal Controller using SDRE Technique)

  • 양창덕;김민재;이정환;홍지승;김창주
    • 한국항공우주학회지
    • /
    • 제36권12호
    • /
    • pp.1152-1162
    • /
    • 2008
  • 본 논문은 헬리콥터 비선형 제어기 설계를 위한 State-Dependent Riccati Equation (SDRE) 기법을 다루었다. SDRE 제어기법은 비선형 운동방정식에 대해 선형 시스템과 같은 구조를 갖는 방정식을 필요하기 때문에 State-Dependent Coefficient (SDC) factorization 기법을 개발하여 비선형 운동방정식으로부터 이러한 구조의 방정식을 유도하였다. SDRE제어기를 온라인상에서 설계하는데 필요한 대수 Riccati 방정식의 효율적인 수치해법을 연구하였다. 본 연구에서 제안된 수치기법을 헬리콥터의 경로추종문제로 적용하였으며, 고 신뢰도의 헬리콥터 수학적 모델을 적용하여 실시간으로 SDRE 제어기를 설계할 수 있는 방안을 제안하였다.

SDRE 기반 준최적 교통 혼잡 제어기 설계 (SDRE-Based Near Optimal Traffic Controller Design)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1086-1089
    • /
    • 2012
  • We propose a near optimal controller design method for ramp metering based on SDRE (State Dependent Riccati Equation) approach. We parameterize the optimal nonlinear controller in terms of the solution matrices of an SDRE. We also give a simple algorithm to obtain the controller gain. Finally we give numerical results to show the effectiveness of the proposed near optimal traffic controller design method.

진입로 신호등 시스템을 위한 SDRE 기반 최적 비선형 관측기 제어기 설계 (SDRE Based Optimal Nonlinear Observer-Controller Design for Ramp Metering System)

  • 이기호;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.533-536
    • /
    • 2014
  • In this paper, a near optimal decentralized observer-controller design method is proposed for ramp metering systems based on SDRE (State Dependent Riccati Equation) approach. The optimal nonlinear observer gain is parameterized in terms of the solution matrix of an SDRE. This paper gives a simple algorithm to compute the near optimal observer gain. The optimal control design problem is also considered. Finally, numerical simulation results are given to illuminate the effectiveness and practicality of the proposed design method.

Optimal Control for Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권3호
    • /
    • pp.206-220
    • /
    • 2010
  • This paper proposes optimal control techniques for determining translational and rotational maneuvers that facilitate proximity operations and docking. Two candidate controllers that provide translational motion are compared. A state-dependent Riccati equation controller is formulated from nonlinear relative motion dynamics, and a linear quadratic tracking controller is formulated from linearized relative motion. A linear quadratic Gaussian controller using star trackers to provide quaternion measurements is designed for precision attitude maneuvering. The attitude maneuvers are evaluated for different final axis alignment geometries that depend on the approach distance. A six degrees-of-freedom simulation demonstrates that the controllers successfully perform proximity operations that meet the conditions for docking.

가변속 풍력 발전용 영구자석형 동기발전기의 SDRE 기반 준최적 비선형 제어기 설계 (SDRE Based Near Optimal Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System)

  • 박형무;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.28-33
    • /
    • 2015
  • In this paper, we propose a near optimal controller design method for permanent magnet synchronous generators (PMSGs) of MW-class direct-driven wind turbine systems based on SDRE (State Dependent Riccati Equation) approach. Using the solution matrix of an SDRE, we parameterize the optimal controller gain. We present a simple algorithm to compute the near optimal controller gain. The proposed optimal controller can enable PMSGs to precisely track the reference speed determined by the MPPT algorithm. Finally, numerical simulation results are given to verify the effectiveness of the proposed optimal controller.

Seismic response control of buildings with force saturation constraints

  • Ubertini, Filippo;Materazzi, A. Luigi
    • Smart Structures and Systems
    • /
    • 제12권2호
    • /
    • pp.157-179
    • /
    • 2013
  • We present an approach, based on the state dependent Riccati equation, for designing non-collocated seismic response control strategies for buildings accounting for physical constraints, with particular attention to force saturation. We consider both cases of active control using general actuators and semi-active control using magnetorheological dampers. The formulation includes multi control devices, acceleration feedback and time delay compensation. In the active case, the proposed approach is a generalization of the classic linear quadratic regulator, while, in the semi-active case, it represents a novel generalization of the well-established modified clipped optimal approach. As discussed in the paper, the main advantage of the proposed approach with respect to existing strategies is that it allows to naturally handle a broad class of non-linearities as well as different types of control constraints, not limited to force saturation but also including, for instance, displacement limitations. Numerical results on a typical building benchmark problem demonstrate that these additional features are achieved with essentially the same control effectiveness of existing saturation control strategies.

Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

  • Kim, Sung-Woo;Park, Sang-Young;Park, Chan-Deok
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.389-395
    • /
    • 2012
  • The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS produces a control signal for one of the three axes of a spacecraft's body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

Robust $H_{\infty}$ Control for Bilinear Systems with Parameter Uncertainties via output Feedback

  • Kim, Young-Joong;Lee, Su-Gu;Chang, Sae-Kwon;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.386-391
    • /
    • 2003
  • This paper focuses on robust $H_{\infty}$ control for bilinear systems with time-varying parameter uncertainties and exogenous disturbance via output feedback. $H_{\infty}$ control is achieved via separation into a $H_{\infty}$ state feedback control problem and a $H_{\infty}$ state estimation problem. The suitable robust stabilizing output feedback control law can be constructed in term of approximated solution to x-dependent Riccati equation using successive approximation technique. Also, the $H_{\infty}$ filter gain can be constructed in term of solution to algebraic Riccati equation. The output feedback control robustly stabilizes the plant and guarantees a robust $H_{\infty}$ performance for the closed-loop systems in the face of parameter uncertainties and exogenous disturbance.

  • PDF