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The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS 
produces a control signal for one of the three axes of a spacecraft’s body frame, so in total three ANFISs are constructed for 
3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS 
is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent 
Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and 
a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov 
stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, 
root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS 
controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that 
the ANFIS controller with the larger stability region provides better performance according to the performance indicators.
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1. INTRODUCTION

Spacecraft attitude control is an important aspect of 

performing many space missions. There has been a lot of 

interest in designing an accurate and stable controller for 

attitude control. Recently, state-dependent Riccati equation 

(SDRE) controllers have been introduced and applied to 

spacecraft attitude control. An SDRE controller produces a 

robust and suboptimal control signal, and is relatively easy 

to implement in nonlinear systems (Chang et al. 2009, 2010, 

Abdelrahman et al. 2011, Abdelrahman & Park 2011, Park 

et al. 2011). But despite its benefits, it has some drawbacks: 

1) there is no systematic way to determine optimal value 

for weighting matrices which affects the optimality of the 

controller. 2) It can be difficult to derive state dependent 

coefficient (SDC) matrix if the plant system is highly 

nonlinear and complex. 3) From the perspective of real 

time application, it presents a high computational burden 

because it is necessary to update the solution of the Riccati 

equation every sampling time. 

To provide a solution to the third of the problems 

mentioned above, adaptive neuro-fuzzy inference system 

(ANFIS) can be used, as it can model any system once it 

is given the input-output data pairs of the original system. 

ANFIS was first introduced by Jang (1993), and has been 

used by many researchers in control and nonlinear system 

identification (Jang & Sun 1995, Buyukbingol et al. 2007, 

Ghomsheh et al. 2007, Hua & Hengxin 2008, Sivarao et al. 

2009, Tahmasebi & Hezarkhani 2010, Baseri & Alinejad 2011, 

Pratama et al. 2011). ANFIS is a combination of a neural 

network and a fuzzy inference system, and it is based on the 

TS fuzzy model (Takagi & Sugeno 1985). The fuzzy inference 

system uses a linguistic variable so that it can incorporate 

the experiences of human experts, but there used to be 

hardly any method of constructing a fuzzy inference system 

in a systematic way. Neural networks have the capacity 

of learning from data to update adaptive parameters, 

but do not have any kind of specific structure for system 
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identification. In this respect, the neural networks and fuzzy 

inference system can help each other by compensating for 

each other’s weak points. By taking the advantages from 

both of them, ANFIS comes out. Therefore ANFIS has a 

structural way of identifying a specific system using the 

power of learning of neural networks. 

Abdelrahman et al. (2010) proposed a method of 

applying ANFIS to spacecraft attitude control to reduce 

the computational load on the SDRE controller. In their 

approach, ANFIS is trained using the training data obtained 

from attitude control simulations using an SDRE controller 

so that ANFIS can mimic the control signal of the SDRE 

controller with respect to the state error. The same approach 

is adopted in this paper with some modifications: 1) to 

model the SDRE control system more accurately, coupled 

training data is used, while Abdelrahman et al. (2010) used 

decoupled training data. 2) To deal with the multiple input 

variables, the subtractive clustering (SC) method proposed 

by Chiu (1994) is used for initialization of the fuzzy inference 

system of ANFIS. The procedure for training the ANFIS is 

offered by Jang et al. (1997) as a hybrid learning rule. 

Another viewpoint of this paper is in the stability 

region estimation and performance indicator of ANFIS 

controller. To estimate the stability region of ANFIS using 

Lyapunov stability theory, it is necessary to calculate the 

Jacobian matrix of the control system. The Jacobian of the 

ANFIS control system is hard to obtain analytically, so a 

numerical SDC formulation proposed by Vaddi et al. (2009) 

is used to calculate the Jacobian matrix numerically. Root 

mean square error (RMSE) and correlation factor (CF) 

are calculated as performance indicators for the system 

identification capability of the ANFIS controller.

2. ANFIS CONTROLLER FORMULATION

2.1 ANFIS Structure

ANFIS consists of 5 layers, and each layer has several 

adaptive nodes. The nodes are adaptive in that they contain 

adaptive parameters. ANFIS is based on the Takagi-Sugeno 

(TS) fuzzy model, 

	 (1)

and is illustrated in Fig. 1 for the two rule case (Jang et 

al. 1997). The functions of the nodes in each layer are as 

follows:

Layer 1: the node output in this layer is membership 

function for input variables.

	

Layer 2: the node output in this layer is product of the 

membership functions for each variable, which is called 

firing strength.

	

In this paper, Gaussian membership functions are used.

	

where ci , σi  are called premise parameters.

Layer 3: the node output in this layer is a normalized firing 

strength.

	

Layer 4: the node output in this layer is 

	

where pi , qi , ri are called consequent parameters. The function 

fi is a linear combination of input variables, which is why it 

is called first order TS model.

Layer 5: the node output in this layer is the summation of all 

rules’ output.

Fig. 1. Architecture of adaptive neuro-fuzzy inference system (Jang et al. 
1997).
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In Layers 1 and 2, all possible membership function values 

are obtained for each input, and the firing strength is ready 

for each rule as a product of membership functions. In 

Layers 3 and 4, each rule’s output is ready for summation in 

Layer 5, which produces the output of ANFIS.

2.2 ANFIS Training

The purpose of training ANFIS is to model the SDRE 

control system so that ANFIS can produce a control signal 

that is as close as possible to the control signal obtained 

by SDRE controller with the same state error. The coupled 

training data used in this paper contains 6 error states and 1 

corresponding control signal in a pair as described below, 

	

where (eroll , epitch , eyaw ) are Euler angle errors, (eωx 
, eωy 

, eωz 
) are 

angular velocity errors, and (ux , uy , uz) are control signals for 

each axis. The coupled training data represents the original 

SDRE control system more accurately than decoupled 

training data, and it is obtained from 100 SDRE attitude 

control simulations with 100 initial conditions uniformly 

distributed in the range of [-180, 180] deg and [-1, 1] deg/s 

for Euler angles and angular velocities, respectively.

For training data containing many input variables, it is 

not adequate to use a grid partitioning method because the 

number of rules in ANFIS increases exponentially with the 

number of inputs. For example, 2 membership functions 

for 6 inputs means 26 rules. The number of rules, however, is 

not dependent on the number of membership functions or 

input variables in SC, but is dependent on the cluster size. 

Therefore, as an initialization of ANFIS, SC (Chiu 1994) is 

used.

After the fuzzy inference system is initialized by SC, 

the ANFIS training process starts. The process is divided 

into two sequences according to the hybrid learning 

method proposed by Jang et al. (1997). One is to update the 

premise parameter and the other is to update consequent 

parameters. Least squares estimator is used for consequent 

parameter updating, and back propagation is used for 

premise parameter updating.

3. SDRE CONTROLLER FORMULATION

To apply SDRE controller to the attitude control problem, 

the spacecraft dynamics are represented by angular velocity 

and the vector part of quaternion as follows (Chang et al. 

2008),

	 (2)

where ωbr and ωri are an angular velocity vector of spacecraft 

with respect to orbital reference frame and an angular 

velocity vector of orbital reference frame with respect 

to inertial frame, respectively, qbr is the vector part of a 

quaternion between spacecraft body frame and orbital 

reference frame, q4
br is 4th element of the quaternion, I is 

the moment of inertia of the spacecraft, C(qbr) represents 

coordinate transformation matrix from orbital reference 

frame to spacecraft body frame, [●×] is a cross product 

matrix, and u is control signal. Note that all variables in 

Eq. (2) are expressed in spacecraft body frame. Eq. (2) can 

be rewritten using SDC form, which is essential in SDRE 

controller design,

	 (3)

where

and C2 is the second column of the coordinate transformation 

matrix, E3×3 is an identity matrix. 

Using Eq. (3), the SDRE can be formulated as follows

	 (4)

Once Q(x) and R(x) are given, Eq. (4) can be solved for P(x), 
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and the SDRE control law is constructed as follows

	 (5)

Eq. (5) is the control signal to minimize a performance 

index represented by

	

4. LYAPUNOV STABILITY AND PERFORMANCE 
INDICATOR OF ANFIS

4.1 Stability Region Estimation

Proposed by Bracci et al. (2006), a numerical method to 

estimate the region of attraction of the SDRE-controlled 

systems has been successfully applied to the attitude control 

problem by Chang et al. (2008). The method is as follows:

To apply this method, the dynamics in Eq. (3) are 

linearized around the equilibrium point.

	

where x0 is the equilibrium point. If A0 is Hurwitz, the 

Lyapunov function V(x) can be obtained by solving the 

Lyapunov equation,

	 (6)

and time derivative of the Lyapunov function can be 

obtained as follows.

	

In Eq. (6), Q is chosen by the user as a positive definite 

matrix. Then, the maximum closed region such that all 

the states in that region satisfy the conditions, V(x)≥0 and 

(x)<0, is the stability region. This method is applied to 

estimate the stability region of the SDRE controller and the 

ANFIS controller proposed in this paper.

4.2 Performance Indicators of ANFIS

Aldrian & Djamil (2008) applied ANFIS to predict daily 

rainfall and presented RMSE and CF as performance 

indicators to check the effectiveness of the given ANFIS 

in modeling the original system. The two performance 

indicators are formulated as follows.

	

where n is the number of test data pairs, g represents the 

output of the original system, G represents the output of 

ANFIS, and E(●) is a mean value operator. The test data 

contains system input variables, and the outputs of the 

original system and the ANFIS are obtained given the input 

variables. The RMSE indicates how closely the output 

of ANFIS can follow that of the original system over the 

predetermined test data, and CF indicates the degree of 

correlation between outputs from original system and 

ANFIS. The performance of the ANFIS controller proposed 

in this paper is evaluated using these indicators.

5. TEST AND SIMULATIONS

5.1 Simulation Environment

Simulations have been carried out to test the performance 

of ANFIS controller when it is applied to the attitude control 

problem. The spacecraft is assumed to be on the low Earth 

orbit 600 km above the Earth’s surface, and the orbit is 

assumed to be circular. The spacecraft moment of inertia is 

assumed to be diag[10 10 10]kgm2. The simulation time span 

is 100 seconds and sampling interval is 1 second. The initial 

condition is set to be

	

for Euler angles and angular velocity, respectively.

5.2 Test and Simulation Results

Stability region of SDRE and ANFIS control system has 

been estimated using the Lyapunov-theory-based method 

proposed by Bracci et al. (2006) (see Section 4). This method 

requires the calculation of the Jacobian matrix of the control 



393 http://janss.kr 

Sung-Woo Kim et al.     Attitude Control using ANFIS

system. However, it is very difficult to get the Jacobian 

matrix of ANFIS control system using analytical calculation. 

To solve this problem, the numerical SDC formulation 

proposed by Vaddi et al. (2009) has been applied to calculate 

the Jacobian matrix. The angular velocity vector is fixed to 

[0.5730 0.5730 0.5730] deg/s within the range of [-1, 1] deg/s 

which is used as a range of initial angular velocities in 100 

SDRE attitude control simulations for generating training 

data (see Section 2), and the stability region is estimated 

over the 1,000 quaternion vector parts. These quaternion 

vector parts are obtained from Euler angles using Euler 

angle to quaternion transformation, and the Euler angle is 

extracted from uniform distribution in the range of [-180, 

180] deg for each axis. The range of the stability region of 

SDRE controller covers 1,000 test states, but for ANFIS 

controller trained by SDRE controller, it differs among 

different ANFISs which are trained in different conditions; 

that is, cluster size in SC (i.e. number of rules) and training 

data configuration. How well the ANFIS is trained is 

measured in this paper by the size of the stability region. A 

well-trained ANFIS controller is an ANFIS controller whose 

stability region contains 199 states of the total of 1,000 test 

states, while the ill-trained ANFIS controller is an ANFIS 

controller whose stability region contains 91 states.

The performance of the well-trained ANFIS controller 

is compared to that of the SDRE controller and that of 

the ill-trained ANFIS controller. Figs. 2 and 3 show state 

error history of well-trained and ill-trained ANFIS control 

systems, respectively, using the initial conditions mentioned 

above. Figs. 4 and 5 show the corresponding control signal 

history for the two ANFIS control systems. We can see 

that the well-trained ANFIS control system trajectories 

Fig. 2. Attitude and angular velocity history (SDRE vs. well-trained 
ANFIS). SDRE: state-dependent Riccati equation, ANFIS: adaptive neuro-
fuzzy inference system.

Fig. 3. Attitude and angular velocity history (SDRE vs. ill-trained ANFIS). 
SDRE: state-dependent Riccati equation, ANFIS: adaptive neuro-fuzzy 
inference system.

Fig. 4. Control history (SDRE vs. well-trained ANFIS). SDRE: state-
dependent Riccati equation, ANFIS: adaptive neuro-fuzzy inference 
system.

Fig. 5. Control history (SDRE vs. ill-trained ANFIS). SDRE: state-dependent 
Riccati equation, ANFIS: adaptive neuro-fuzzy inference system.
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follow the SDRE control system trajectories more closely. 

The performance indicators (RMSE and CF) have been 

calculated using the 1,000 test data sets obtained randomly 

from uniform distribution in the range of [-180, 180] deg 

for Euler angles and [-1, 1] deg/s for angular velocity for 

each axis. The test results are shown in Table 1. The RMSE 

of a well-trained ANFIS is less than one-third that of the 

ill-trained ANFIS, which means the well-trained ANFIS is 

closer to the SDRE controller. In addition, the CF of the well-

trained ANFIS is greater than that of the ill-trained ANFIS, 

which means the well-trained ANFIS is correlated more 

strongly with the SDRE controller.

6. CONCLUSIONS AND DIRECTIONS FOR FUTURE 
RESEARCH

ANFIS controller is constructed and applied to the 

attitude control problem. The ANFIS controller is trained 

using data obtained by attitude control simulations using 

an SDRE controller. The fuzzy inference system of ANFIS 

is initialized by SC with 6 input variables. RMSE and CF 

are used to test the performance of the ANFIS controller, 

and stability region of the controller is estimated using 

numerical SDC formulation based on Lyapunov stability 

theory. The ANFIS performance is shown to be dependent 

on the number of rules of ANFIS and the training data 

configuration. Through a comparison between well-trained 

and ill-trained ANFIS, the performance indicators are 

shown to be adequate indicators. However, the range of the 

stable region of the ANFIS control system does not cover all 

test state regions with fixed angular velocity, while the SDRE 

control system appears to be globally asymptotically stable. 

Moreover, the numerical error possibly caused by numerical 

SDC formulation has not been considered. Nevertheless, 

the results shown in this paper allow us to confirm the 

usability of ANFIS controller. Future research should pursue 

the design of a globally stable ANFIS controller.
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