• Title/Summary/Keyword: state constraints

Search Result 506, Processing Time 0.031 seconds

Multi-Objective Optimization Model of Electricity Behavior Considering the Combination of Household Appliance Correlation and Comfort

  • Qu, Zhaoyang;Qu, Nan;Liu, Yaowei;Yin, Xiangai;Qu, Chong;Wang, Wanxin;Han, Jing
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1821-1830
    • /
    • 2018
  • With the wide application of intelligent household appliances, the optimization of electricity behavior has become an important component of home-based intelligent electricity. In this study, a multi-objective optimization model in an intelligent electricity environment is proposed based on economy and comfort. Firstly, the domestic consumer's load characteristics are analyzed, and the operating constraints of interruptible and transferable electrical appliances are defined. Then, constraints such as household electrical load, electricity habits, the correlation minimization electricity expenditure model of household appliances, and the comfort model of electricity use are integrated into multi-objective optimization. Finally, a continuous search multi-objective particle swarm algorithm is proposed to solve the optimization problem. The analysis of the corresponding example shows that the multi-objective optimization model can effectively reduce electricity costs and improve electricity use comfort.

Resolution of kinematic redundancy using contrained optimization techniques under kinematic inequality contraints

  • Park, Ki-Cheol;Chang, Pyung-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.69-72
    • /
    • 1996
  • This paper considers a global resolution of kinematic redundancy under inequality constraints as a constrained optimal control. In this formulation, joint limits and obstacles are regarded as state variable inequality constraints, and joint velocity limits as control variable inequality constraints. Necessary and sufficient conditions are derived by using Pontryagin's minimum principle and penalty function method. These conditions leads to a two-point boundary-value problem (TPBVP) with natural, periodic and inequality boundary conditions. In order to solve the TPBVP and to find a global minimum, a numerical algorithm, named two-stage algorithm, is presented. Given initial joint pose, the first stage finds the optimal joint trajectory and its corresponding minimum performance cost. The second stage searches for the optimal initial joint pose with globally minimum cost in the self-motion manifold. The effectiveness of the proposed algorithm is demonstrated through a simulation with a 3-dof planar redundant manipulator.

  • PDF

Optimal Guaranteed Cost Control of Linear Uncertain Systems with Input Constraints

  • Yu Li;Han Qing-Long;Sun Ming-Xuan
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.397-402
    • /
    • 2005
  • The guaranteed cost control problem for a class of linear systems with norm-bounded time-varying parameter uncertainties and input constraints is considered. A sufficient condition for the existence of guaranteed cost state feedback controllers is derived via the linear matrix inequality (LMI) approach, and a design procedure to guaranteed cost controllers is given. Furthermore, a convex optimization problem is formulated to determine the optimal guaranteed cost controller. An example is given to illustrate the effectiveness of the proposed results.

A Constrained Receding Horizon Estimator with FIR Structures

  • Kim, Pyung-Soo;Lee, Young-Sam
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.289-292
    • /
    • 2001
  • This paper concerns with a receding horizon estimator (RHE) for discrete-time linear systems subject to constraints on the estimate. In solving the optimization for every horizons, the past all measurement data outside the horizon is discarded and thus the arrival cost is not considered. The RHE in the current work is a finite impulse response (FIR) structure which has some good inherent properties. The proposed RHE can be represented in the simple matrix form for the unconstrained case. Various numerical examples demonstrate how including constraints in the RHE can improve estimation performance. Especially, in the application to the unknown input estimation, it will be shown how the FIR structure in the RHE can improve the estimation speed.

  • PDF

High precision integration for dynamic structural systems with holonomic constraints

  • Liu, Xiaojian;Begg, D.W.;Devane, M.A.;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.283-295
    • /
    • 1997
  • This paper presents a high precision integration method for the dynamic response analysis of structures with holonomic constraints. A detail recursive scheme suitable for algebraic and differential equations (ADEs) which incorporates generalized forces is established. The matrix exponential involved in the scheme is calculated precisely using $2^N$ algorithm. The Taylor expansions of the nonlinear term concerned with state variables of the structure and the generalized constraint forces of the ADEs are derived and consequently, their particular integrals are obtained. The accuracy and effectiveness of the present method is demonstrated by two numerical examples, a plane truss with circular slot at its tip point and a slewing flexible cantilever beam which is currently interesting in optimal control of robot manipulators.

LNG운반선의 증발기체 재액화 장치의 사이클 해석

  • Jin, Yeong-Uk
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.221-232
    • /
    • 2012
  • Cycle analysis has been performed to find out the optimum design point of the BOG re-liquefaction plant. The cycle state, defined by three cycle variables, was mainly described by the three cold temperatures of the three-pass heat exchanger, on which the constraints by the heat exchanger are imposed. The cycle states which are confined within a domain limited by the temperature constraints were the primary issue of this study. The BOG mass within the domain was analyzed first and then the cycle performance was related to the BOG mass afterwards, which enabled us to explain the observed behavior of the cycle performance under the temperature constraints by the heat exchanger. A good cycle performance could be ensured if the two cold Nitrogen temperatures of the three temperatures were placed close together near $-140^{\circ}C$ while the BOG temperature is kept far above enough, but not too far, from $-140^{\circ}C$ such that it does not interfere in their optimum temperature range.

  • PDF

An Interior Point Method based Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints

  • Song Hwa-Chang;Lee Byong-Jun;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.152-158
    • /
    • 2005
  • This paper describes a reactive optimal power flow incorporating margin enhancement constraints. Margin sensitivity at a steady-state voltage instability point is calculated using invariant space parametric sensitivity, and it can provide valuable information for selection of effective control parameters. However, the weakest buses in neighboring regions have high margin sensitivities within a certain range. Hence, the control determination using only the sensitivity information might cause violation of operational limits of the base operating point, at which the control is applied to enhance voltage stability margin in the direction of parameter increase. This paper applies an interior point method (IPM) to solve the optimal power flow formulation with the margin enhancement constraints, and shunt capacitances are mainly considered as control variables. In addition, nonlinearity of margin enhancement with respect to control of shunt capacitance is considered for speed-up control determination in the numerical example using the IEEE 118-bus test system.

Multiobjective State-Feedback Control of Beams with Piezoelectric Device (압전체가 부착된 보의 다목적 상태궤한제어)

  • Park, Chul-Hue;Hong, Seong-Il;Park, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.828-833
    • /
    • 2004
  • The performance of a mixed $H_{\infty}/H_2$ design with pole placement constraints based on robust vibration control for a piezo/beam system is investigated. The governing equation of motion for the piezo/beam system is derived by Hamilton's principle. The assumed mode method is used to discretize the governing equation into a set of ordinary differential equation. A robust controller is designed by $H_{\infty}/H_2$ feedback control law that satisfies additional constraints on the closed-loop pole location in the face of model uncertainties, which are derived for a general class of convex regions of the complex plane. These constraints are expressed in terms of linear matrix inequalities (LMIs) approach for the multiobjective synthesis. The validity and applicability of this approach for vibration suppressions of SMART structural systems are discussed by damping out the multiple vibrational modes of the piezo/beam system.

  • PDF

ATC Determination and Analysis Considering Voltage Constraints (전압제약을 고려한 가용송전용량 결정 및 분석)

  • Kim, Kyu-Ho;Park, Jin-Wook;Kim, Jin-O;Shin, Dong-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.169-171
    • /
    • 2004
  • Available transfer capability(ATC) is an important indicator of the usable amount of transmission capacity accessible by several parties for commercial trading in power transaction activities. This paper deals with an application of optimization technique for available transfer capability(ATC) calculation and analyzes the results of ATC by considering several constraints. Sequential quadratic programming(SQP) is used to calculate the ATC problem with state-steady security constraints. The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

  • PDF

Secure Healthcare Management: Protecting Sensitive Information from Unauthorized Users

  • Ko, Hye-Kyeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.82-89
    • /
    • 2021
  • Recently, applications are increasing the importance of security for published documents. This paper deals with data-publishing where the publishers must state sensitive information that they need to protect. If a document containing such sensitive information is accidentally posted, users can use common-sense reasoning to infer unauthorized information. In recent studied of peer-to-peer databases, studies on the security of data of various unique groups are conducted. In this paper, we propose a security framework that fundamentally blocks user inference about sensitive information that may be leaked by XML constraints and prevents sensitive information from leaking from general user. The proposed framework protects sensitive information disclosed through encryption technology. Moreover, the proposed framework is query view security without any three types of XML constraints. As a result of the experiment, the proposed framework has mathematically proved a way to prevent leakage of user information through data inference more than the existing method.