A Constrained Receding Horizon Estimator with FIR Structures

  • Kim, Pyung-Soo (Mobile Platform Group, Digital Media R&D Center, Samsung Electronics Co. Ltd) ;
  • Lee, Young-Sam (School of Electrical Engreering & Computer Science, Seoul National University)
  • Published : 2001.12.01

Abstract

This paper concerns with a receding horizon estimator (RHE) for discrete-time linear systems subject to constraints on the estimate. In solving the optimization for every horizons, the past all measurement data outside the horizon is discarded and thus the arrival cost is not considered. The RHE in the current work is a finite impulse response (FIR) structure which has some good inherent properties. The proposed RHE can be represented in the simple matrix form for the unconstrained case. Various numerical examples demonstrate how including constraints in the RHE can improve estimation performance. Especially, in the application to the unknown input estimation, it will be shown how the FIR structure in the RHE can improve the estimation speed.

Keywords

References

  1. Trans. ASME J. of Basic Engr. v.83 New results in linear filtering and prediction theory R. E. Kalman;R. S. Bucy
  2. AIChE Journal v.42 no.8 A moving horizon-based approach to least squares estimation D. G. Robertson;J. H. Lee;J. B. Rawlings
  3. Automatica v.37 no.10 Constrained linear state estimation - a moving horizon approach C. V. Rao;J. B. Rawlings;J. H. Lee
  4. IEEE Trans. Inform. Theory v.31 Recursive limited memory filtering and scattering theory A. M. Bruckstein;T. Kailath
  5. IEEE Trans. Automat. Contr. v.44 no.9 A receding horizon Kalman FIR filter for discrete time-invariant systems W. H. Kwon;P. S. Kim;P. Park
  6. Trans. Control, Automation and Systems Engr. v.2 no.1 Speech enhancement using receding horizon FIR filtering P. S. Kim;W. H. Kwon;O. K. Kwon
  7. IEEE Trans. Automat. Contr. v.33 no.3 Separate-bias Kalman estimator with bias state noise M. B. Ignagni
  8. Automatica v.36 no.10 Estimation and detection of unknown inputs using optimal FIR filter S. H. Park;P. S. Kim;O. K. Kwon;W. H. Kwon