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Abstract – With the wide application of intelligent household appliances, the optimization of 
electricity behavior has become an important component of home-based intelligent electricity. In this 
study, a multi-objective optimization model in an intelligent electricity environment is proposed based 
on economy and comfort. Firstly, the domestic consumer’s load characteristics are analyzed, and the 
operating constraints of interruptible and transferable electrical appliances are defined. Then, 
constraints such as household electrical load, electricity habits, the correlation minimization electricity 
expenditure model of household appliances, and the comfort model of electricity use are integrated 
into multi-objective optimization. Finally, a continuous search multi-objective particle swarm 
algorithm is proposed to solve the optimization problem. The analysis of the corresponding example 
shows that the multi-objective optimization model can effectively reduce electricity costs and improve 
electricity use comfort. 
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1. Introduction 
 
With the rapid development of China's economy and 

improvements in people’s living standards, household 
electricity consumption has gradually increased along with 
total electricity consumption nationwide, and the use of 
high-powered smart appliances is growing [1]. This 
phenomenon has created a peak in the seasonal electricity 
load. Meanwhile, smart grids have revolutionized electricity 
generation and consumption via a two-way flow of power 
and information [2]. On one hand, this flow helps the grid 
to expand integrated services for users; on the other, it is 
necessary to examine users’ electricity habits via analysis 
[3, 4] to adjust electricity service, help users improve 
efficiency, and optimize electricity use. Therefore, power 
users are becoming increasingly important in demand-side 
management. The focus of this paper is to rationally 
arrange and optimize household smart electricity 
behavior to effectively reduce electricity costs with the aim 
of ensuring the user’s electricity comfort . 

Currently, countries around the world have set 
aggressive goals to optimize smart electricity behavior in 

liberalized markets, especially on the demand side. By 
dividing a day into slots based on starting time, the length 
of operation and electricity consumption in each slot 
(including electricity consumption characteristics and 
pricing mechanisms), we propose an intelligent electricity 
consumption optimization approach to minimize electricity 
consumption fees [5]. [6] reviewed the concept of energy 
management systems for residential customers and 
explored the background of smart home energy manage-
ment system technologies. Meanwhile, studies have proposed 
an optimal and automatic residential energy consumption 
scheduling framework that attempts to achieve a desired 
trade-off between minimizing electricity payments and 
minimizing waiting times for the operation of each 
appliance in the household given a real-time pricing tariff 
and increasing block rates [7]. In addition, demand-side 
management encourages users in a smart grid to shift 
their electricity consumption in response to fluctuating 
electricity prices. A distributed framework is proposed for 
the demand response based on cost minimization; this 
optimization method will result in lower costs for consumers, 
lower generation costs for utility companies, lower peak 
load, and lower load fluctuations [8, 9]. Mohsenian-Radet 
al. [10] outlined an optimization framework that aims to 
minimize electricity bills while considering user comfort; 
however, the assumption of homogeneous appliances and 
using waiting time to represent user comfort would be too 
simplistic in this paper to represent different characteristics 
of home appliances and user requirements. RohH T al. 
[11] studied an electricity load scheduling problem in a 
residence. Compared with previous works in which only 
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limited sets of appliances were considered, the authors 
categorized various appliances into five sets based on 
varying energy consumption and operation characteristics 
and provided accompanying mathematical models.  

In fact, to the best of our knowledge, none of the prior 
work on residential load control has considered household 
appliance correlations and comfort on the user side. Recently, 
more attention has been paid to the role of demand 
response (DR) to time-varying pricing such astime-of-use 
(TOU) pricing [12-14]. In the TOU price environment,the 
contributions of this paper are as follows:The contributions 
of this paper are as follows: 

1)  Given the constraints of controlled electrical appliances 
and proposed concept of household electricity load 
correlation, we construct a minimum electricity expenditure 
model based on household electricity load correlation. 

2)  With the objective of minimizing changes in electricity 
habits, the model is constructed with an emphasis on user 
satisfaction. 

3)  A multi-objective optimization model is proposed in 
the intelligent electricity environment with dual focuses on 
economy and comfort. 

4)  Continued research regarding the multi-objective 
particle algorithm is proposed to solve the optimization 
problem. Specifically, the model can achieve significant 
savings in electricity costs, more flexibility in the trade-
off between cost and user comfort, and reduced energy 
demand during peak hours. 

The rest of this paper is organized as follows. We 
introduce the residential electricity load and notations in 
Section II. In Section III, we construct the multi-objective 
optimization model, which includes a minimum electricity 
expenditure model considering household electricity load 
correlation and user comfort. Our proposed continuous 
search of multi-objective particle swarm optimization 
(CSMOPSO) appears in Section IV. The simulation 
experiment is explained and results are provided and 
discussed in Section V. Finally, conclusions are drawn in 
Section VI. 

 
 

2. Analysis of Residential Electricity Load 
 
According to customary user power consumption and 

household appliances’ operational characteristics, the load 
of household electric appliances can be divided into three 
types: base load, interruptible load, and transferable load. 
The base load can neither change the power of a task nor 
optimize electricity use, as in refrigerators, lights, and so 
on. The interruptible load and transferable load can 
dispatch the power utilization task for a period of time as 
long as the user can complete the designated power 
consumption task, such as with air conditioning, washing 
machines, etc. Because the optimization of power con-
sumption behavior does not affect the power consumption 
of the base load, this paper only establishes operating 

constraints for the interruptible load and transferable load 
and analyzes power consumption optimization. 

 
2.1 Interruptible load 

 
The working range of the interruptible load i is [aIL,i, 

bIL,i], and each working period is β. Before completing a 
power consumption task, users can use electrical 
appliances according to their habits. 
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where pIL,i(t) is the power of the appliancel i; lIL,i(t) 
indicates the use state of the interruptible load (when the 
interruptible load is running, the lIL,i(t) is 1; otherwise, its 
value is 0); LIL,i(t) is the total power of i; β is the last 
working time of the interruptible load; aIL,ei is the earliest 
time to open interruptible load i for the user; and aIL,li is the 
latest time to open interruptible load i for the user. 

The total power consumption is the sum of all 
interruptible electrical appliances, as shown in Eq. (5): 
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where m is the total number of interruptible appliances. 

 
2.2 Transferable load 

 
According to the user’s power habits, it can be 

concluded that the working range of the transferable load i 
is [aTL,i,bTL,i]. The running time of the non-stop electrical 
appliance is continuous and can be stopped only when the 
task is completed.The total electricity is shown in Eq. (6): 
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where pTL,i(t) is the power of the appliance i; lTL,i(t) 



Zhaoyang Qu, Nan Qu, Yaowei Liu, Xiangai Yin, Chong Qu, Wanxin Wang, and Jing Han 

 http://www.jeet.or.kr │ 1823

indicates the use state of the transferable load; LIL,i(t) is the 
total power of i; and M represents the number of working 
hours of i. min

, ( )TL ip t  and max
, ( )TL ip t  are the minimum and 

maximum values of the transferable load’s power; aTL,ei 
is the earliest time to open transferable load i for the user; 
and aTL,li is the latest time to open transferable load i for 
the user. Eq. (8) shows that transferable load i runs 
continuously from time t at runtime. 

In addition, electric vehicles and batteries are generally 
considered part of household smart electricity and can be 
adjusted for use time according to their condition. The 
constraints are as follows: 

 
 , , ,( ) ( 1) ( )TL i TL i TL iQ t Q t p tm= - +     (10) 
 min , max( )TL iQ Q t Q£ £         (11) 

 , , ,( ) d
TL i TL i TL iQ b Q=  (12) 

 
where QTL,i(t) is the electricity of the charging and 

discharging equipment, and μ is the efficiency of charging 
and discharging. Other parameters, denoted as Qmin and 
Qmax, represent the range of the electricity; ,

d
TL iQ  is the 

amount of electricity required to complete the task. 
The total power consumption is the sum of all 

transferable loads as shown in Eq. (13). 
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where n is the total number of transferable loads. 

 
 

3. Multi-Objective Optimization Model for 
Electrical Behavior 

 
The multi-objective optimization model in the intelligent 

electricity environment is proposed based on economy and 
comfort. 

 
3.1 The minimum electricity expenditure model 

considering household electricity load correlation 
 
The electricity cost of household intelligent electricity is 

the total power consumption of three kinds of household 
appliances, which are the base load, interruptible load, and 
transferable load. According to the actual use of each 
household appliance, the objective of the electricity cost 
function is to complete the user's electricity consumption 
task while keeping electricity costs to a minimum. 
Therefore, we denote the cost function as 
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where the underlying parameters are represented thusly: 
C(t)(t=1,2,3...,24) is the TOU price; aei is the earliest time 
to open i for the user; alt is the latest time to open i for the 
user; Umax is the maximum capacity for home lines; and 
Uuncontrollable is the total power of uncontrolled household 
appliances during this working period. Eq. (15) shows all 
appliances’ total electric power limit. Eq. (16) indicates the 
actual opening time of i in the permissible opening time of 
the users. 

In light of the huge uncertainty in demand response of 
household loads, this paper suggests that cooperative use 
of household electrical appliances is an important factor 
affecting household users’ response; thus, we propose the 
concept of household electricity load correlation in 
which we construct a household electricity load model and 
design a real-time updated optimization strategy based on 
household electricity load correlation. 

The household electricity load correlation represents the 
use of the appliance in conjunction with others. According 
to the use time of each household appliance, we establish a 
matrix to represent the correlation of electrical appliances 
[15]. The matrices are as follows (17): 
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where rij∈[0,1]. If rij=1, the appliances i and j are used at 
the same time, and if rij=0, home appliances i and j are 
used separately. The underlying coefficients are denoted as 
(18): 
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Using rij to modify the parameters of aei and alt in the 

formula (16). In this way, the model takes into account the 
user's power consumption habits and avoids confusion 
when optimizing the use of existing home appliances. 
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3.2 User electricity comfort model 
 
When the optimization of the original behavior requires 

more adjustment, user comfort is low. In other words, the 
longer the running time of an appliance, the lower the 
user’s comfort level before and after optimization. The 
user’s electricity comfort model is as follows: 
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where pi

0(t) and pi(t) are the original and optimized 
electricity power; li

0(t) and li are the original and optimized 
power consumption plans; and ih  is the coefficient of i 
that cannot be adjusted. 

 
3.3 Multi-objective optimization model 

 
The model consists of two parts. The first part is the 

total electricity cost, which can be expressed as (14). The 
objective of this function is to adjust the home appliance 
plan to lower the TOU price. The second part of the 
objective function is the comfort cost, which can satisfy 
the user's electrical habits. These two objective functions 
are inherently contradictory, hence our proposal of a multi-
objective optimization model of electrical behavior that 
considers the correlation and comfort of electrical 
appliances. The model is as follows: 

 

 {minmin max
CostF Comfort=         (23) 

 
where Cost is (14) and Comfort is (21). 

 
 

4. Continuous Search of Multi-Objective Particle 
Swarm Optimization 

 
Particle swarm optimization (PSO) is a relatively recent 

heuristic inspired by the choreography of a bird flock. It 
is a population-based stochastic optimization method 
developed by Eberhart and Kennedy. The algorithm is 
simple yet powerful [16]. PSO adapts behavior represent-
ing the global optimum and looks for the best solution 
vector in the search space [17]. Despite its current success 
in diverse optimization tasks, PSO remains one of the 
heuristics for which limited research on multi-objective 
optimization has been conducted. PSO has been successfully 

used for continuous nonlinear and discrete binary single-
objective optimization and seems particularly suitable for 
multi-objective optimization, mainly because of the 
algorithm’s high-speed convergence in single-objective 
optimization. Multi-objective particle swarm optimization 
(MOPSO) allows the PSO algorithm to manage multi-
objective optimization problems [18]. 

A variant of MOPSO, termed CSMOPSO, is proposed in 
this paper. We add the function factor on the random 
velocity operator, the inertia weight, and other original 
parameters to design a continuous search of multi-objective 
particle swarm optimization (CSMOPSO) to solve the 
model. 

 
4.1 Particle swarm optimization 

 
We can compute the speed and position of each particle 

using the following expression: 
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 ( 1) ( ) ( 1)i i iX t X t V t+ = + +  (25) 
 

where w is the inertia weight; r1 and r2 are random numbers 
in the range [0,1]; Pbest is the best position the particle has 
had; Gbest is a value taken from the repository; and c1 and c2 
(learning factor) have a value of 2.0. 

 
4.2 Continuous search of multi-objective particle 

swarm optimization 
 
MOPSO solves the optimization problem of multiple 

target constraints, which is generated in the basic algorithm 
of multiple solutions in the selection of an optimal solution 
set (i.e., the set of Pareto optimal solutions). To prevent the 
algorithm into a local optimum, we have improved the 
MOPSO algorithm: 

 
4.2.1 Select strategy inertia weight w 

 
To achieve a balance between the global search and local 

search, the value of w is calculated using a dynamic 
decreasing method. 

 
 max( ) 0.8* 0.1

t

w t e
-
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where max is the maximum number of iterations. 
 

4.2.2 Increase random velocity operator 
 
To ensure continuous searching of particles in the 

algorithm and to make prevention of a local optimum more 
likely, the formula of the speed update in (24) (25) will be 
improved, and a random velocity operator will be 
introduced. 
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where a, b are very small random numbers with respective 
values of (0.001, 0.01). 

 
4.2.3 Calculate intensive distance 

 
The number of targets to be optimized for electricity 

behavior is 2, so the intensive distance of particle Xi can be 
depicted as follows: 
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In the formula, fn(Xi) is the n objective function value of 

Xi, and fmax is the maximum value of the external document. 
 

4.2.4 Determine and update Pbest 
 
The first step is to make sure the initial position of 

particle i is Pbest, If the iteration position of i in t times is 
Pbest dominated by Xi, then the updated individual 
optimization is Xi; otherwise, the individual optimal value 
is the highest number of selected dominant particles. 

 
4.2.5 Determine and update Gbest 

 
We apply the optimal Pareto solution for particles in the 

external document. By using (27) (28), the initial position 
of the particle Pbest and the top particle position Gbest is 
found, then the optimal solution of Pareto is found, and 
(29) is used to obtain the intensive distance, which is sorted 
in descending order; finally, Gbest is selected. 

The algorithm of CSMOPSO is as follows: 
(a) Initialization. We enter the initialization parameters 

of time and power for each home appliance. The particle 
size is the number of home appliances, the size of the 
group is S, each individual particle corresponds to home 
appliances’ scheduling plan, and to ensure that the solution 
of particles is optimal in day 24; 

(b) Determine the objective function. The individual 
particles are entered as variables into the model, the 
external document is initialized, and the initial value of the 
Pareto optimal solution is placed. Then, 

(c) According to the updated formula for the particles’ 
velocity and position (i.e., as determined by (27) (28)), the 
dynamic inertia weight is set. Next, we 

(d) Update the A and Pbest of particle populations 
according to the preceding rules; 

(e) Re-update the Pareto optimal solution and re-input A 
to determine whether the number of solutions exceeds the 
capacity; if so, we update and cut it according to the 
intensive distance and find Gbest. 

(f) If it meets the mutation requirements at this time, we 

randomly select a particle and let it achieve random 
variation, then implement the mutation operations; 

(g) If the number of iterations t = t+1, return to step c) 
and continue to run until t ≧max; 

(h) Once the iteration is terminated and the optimal 
position of each dimensional particle is obtained, we have 
the optimal opening time, li,t, for each appliance. 

The algorithm flow is shown in Fig. 1. 
 
 

5. Simulation Experiment and Analysis 
 

5.1 Experimental comparison and analysis of 
MOPSO 

 
FON was proposed by Click in 1999. The standard test 

function selected in this paper is a commonly used test 
function in MOPSO, as shown in Eq. (30). 
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where nk is the dimension of decision variables and equal 
to 3. 

From Fig. 2 and Fig. 3, it is apparent that both the 
improved and unmodified MOPSO converge well to the 

 
Fig. 1. Flowchart of the proposed algorithm 
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Pareto optimal front-end; therefore, we can judge the quality 
of the modification before and after the improvement from 
three angles: specific data of diversity, distribution, and 
error ratio.  

The following specific comparison focuses on the 
experimental data from the design evaluation method. The 
two algorithms, which are presented in Tables 1, 2, and 3, 
provide three aspects for comparison: the convergence of 
the indicators, the diversity index, and the error ratio. The 
algorithm was run 30 times and the results were averaged. 

As can be seen from Tables 1, when the same test 

function FON is applied, the same parameters are selected. 
The CSMOPSO algorithm does not show much improve-
ment on convergence performance compared with the 
unmodified one 

As can be seen from Tables 2, when the same test 
function FON is applied, the same parameters are selected. 
The diversity index increased by about 15%. 

As can be seen from Tables 2, when the same test 
function FON is applied, the same parameters are selected. 
The error ratio increased by an average of 12.1%. 

 
5.2 Experimental data sets and processing 

 
5.2.1 Experimental data sets 

 
The data of the simulation experiment were composed of 

power data from an intelligent district published by UCI 
database [19] and contained user information and total 
power consumption peaks and valleys. In addition, there 
were 3 smart meters for household data, including in the 
kitchen, laundry room, living room, and bedroom. 

As shown in Table 4, the TOU price environment is 
divided into four grades (low, flat, peak, and peak), which 
is the basis for the study. 

 
Table 4. Time-sharing electricity prices in Guangdong 

province 

Type Price period Price/(￥/KW·h） 

Low price 0:00 - 7:00 
22:00 - 24:00 0.208 

Flat section price 7:00 - 11:00 
14:00 - 18:00 0.52 

Peak price 11:00 - 14:00 
18:00 - 22:00 0.832 

 
5.2.2 Dataset processing 

 
The power consumption data of intelligent residential 

districts were clustered using a K-means algorithm, and 
four kinds of users with different power usage were 
obtained (see Fig. 4). After analyzing and summarizing the 
results, we obtained behavior characteristics of all users, as 
shown in Table 5. 
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Fig. 4. Classification of residents' behavior habits 

Table 1 GD evaluation index data 

GD Best Worst Mean Median Std 
MOPSO 0.0002 0.0028 0.0015 4.1586e-04 4.6958e-04 

CSMOPSO 0.0005 0.0027 0.0016 2.1722e-04 3.7534e-04 
 

Table 2 SP evaluation index data 

SP Best Worst Mean Median Std 
MOPSO 0.00083 0.0123 0.0066 0.0059 0.0033 

CSMOPSO 0.00064 0.0105 0.0056 0.0045 0.0026 
 

Table 3. ER evaluation index data 

ER Best Worst Mean Median Std 
MOPSO 0.0013 0.0865 0.0439 0.0324 0.0178 

CSMOPSO 0.0009 0.0762 0.0386 0.0310 0.0158 
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Fig. 2 Pareto front-end diagram of the unmodified 

algorithm 
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Fig. 3. Pareto front-end diagram of the improved algorithm 
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In view of the different types of households, the 
electricity consumption plan is independent which obtained 
by using the electricity optimization model. Therefore, this 
paper used the B electricity data to carry out the example 
analysis. Three different smart meters could be used to 
obtain different appliances’ electrical behavior. We selected 
the basic power consumption data for nine types of 
household appliances to analyze their power consumption 
behavior: microwave oven, range hood, induction cooker, 
dishwasher, rice cooker, washing machine, calorifier, 
athroommaster, and air conditioning. 

 
5.3 Example analysis of optimization model 

 
To solve problems with the model, we propose 

CSMOPSO in this paper. The relevant parameters are as 
follows: the population size S is 100; the maximum 
capacity P of A is 100; the mutation probability is Pm = 0.2; 
max = 150; c1 = c2 = 2; and w = 0.8. 

The optimization of the electricity consumption plan can 
be divided into the following four cases: 

 
5.3.1 Users’ electricity comfort 

 
Considering the user's electricity comfort, electricity 

behavior was optimized to get the optimized electricity 
plan; results appear in Fig. 5. 

The optimization results show that the user's electrical 
behavior was unchanged when optimizing power con-
sumption with the aim of maintaining users’ electrical 
comfort. Compared with Fig. 4, Fig. 5 shows that the 
electricity plan is the user's original electricity usage. At 
this time, the electrical comfort is highest; therefore, the 
cost of the original electricity is ￥16.71. 

As indicated by the optimization results in Fig. 5 (i.e., 
the original electricity consumption plan), the other three 
cases were compared with this case. 

 
5.3.2 Minimum electricity cost as the target 

 
Only considering the economy, the optimized electricity 

plan can be obtained by the minimum electricity 
expenditure model. The results of this experiment are 
shown in Fig. 6. 
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Fig. 5. The power consumption plan aimed at users’ 

comfort 
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Fig. 6. The power consumption plan aimed at minimizing 

electricity costs  
 
Compared with Fig. 5, the electricity plan for household 

appliances was adjusted to the lowest point or the flat 
section of the TOU tariff, where electricity costs were at 
least 32.23% less than originally planned (i.e., the electricity 
cost is ￥11.35). However, the user’s consumption habits 
show substantial changes, such as the electromagnetic oven 
plan changing from 7 points to 5 points; the air conditioner 
being used at 24 points; and some appliances used in 
conjunction with the time were staggering. The satisfaction 
of the optimization result was lowest in this context and 
conformed to the user's habits. 

 

Table 5. The user behavior characteristics 

Category Name Features Electric appliances 

A Low power users These users have fewer family members and lower power consumption and peak and valley 
power; there are almost no high-powered appliances in the home 6 

B Elderly family 
Electricity consumption remains high during the day and begins to rise at 13 before 
declining early in the evening; 
high-powered appliances are relatively few 

12 

C Office worker 
Electricity consumption has obvious peaks and valleys; electricity is higher at night than 
during the day; compared to the B class, the decline in electricity consumption is time 
delayed 

15 

D Elderly and office 
worker family 

A larger number of family members; total electricity consumption, peak, and low power 
continue to be high 17 
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5.3.3 Aim to minimize the cost of household electricity 
load correlation 

 
According to the matrix of the household electricity 

load correlation, the parameters of the tariff model were 
corrected by the correlation coefficient. The results of this 
experiment are displayed in Fig. 7. 

As shown in Fig. 7, these appliances can be adjusted at 
the same time to allow for cooperative household use, such 
as with the range hood and induction cooker, dishwasher 
and calorifier, etc. The electricity cost was ￥14.58 at this 
time, 12.74% less than the original plan. Compared with 
Fig. 5, the plans of associated home appliances changed 
simultaneously, so the user's electrical comfort was 
affected. In addition, a new peak was generated. 

 
5.3.4 Multi-objective optimization model 

 
The results of the multi-objective optimization model are 

shown in Fig. 8. 
The simulation results show that the proposed multi-

objective optimization model can realize the comprehend-
sive consideration of cost and comfort, especially the 
influence of the household electricity load correlation. In 

this case, the electricity cost was ￥13.63, less than the 
original plan and reduced by 18.43%. 

Finally, the optimization results of the four cases were 
compared and analyzed. The results are shown in Fig. 9 
and Table 6. 

From the results in Fig. 9 and Table 6, we can see that 
the multi-objective model significantly outperformed the 
others in terms of reducing energy costs. If the optimization 
of power consumption is carried out with a single objective, 
the optimum of the single target can only be achieved, and 
other targets will be affected accordingly. 

 
 

6. Conclusion 
 
In a time-sharing electricity environment, starting with 

the user's electricity habits and combined with costs, we 
have proposed a multi-objective optimization model of 
electricity behavior to jointly optimize the household 
appliance correlation and home energy scheduling with a 
focus on user comfort. The CSMOPSO algorithm was 
proposed to solve the optimization problem. By comparing 
electrical behavior optimization under four conditions, we 
found the proposed model for residential electricity 
consumption behavior analysis to be accurate and effective: 
the multi-objective optimization model can effectively 
reduce the cost of electricity and improve user comfort. 
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Fig. 8. Power consumption plan for multi-objective opti-

mization model 
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Fig. 9. Comparison of power consumption before and after 

optimization 
 

Table 6. Optimization results of different modes  

Optimization 
stage Comfort Economy Cost/￥ Total  

satisfaction 
1 1.00 1.00 16.71 1.00 
2 0.34 1.67 11.35 0.56 
3 0.63 1.26 14.58 0.79 
4 0.76 1.53 13.63 1.16 
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