• Title/Summary/Keyword: starters

Search Result 178, Processing Time 0.025 seconds

The Characteristics, Detection and Control of Bacteriophage in Fermented Dairy Products (발효유제품에서 박테리오파지의 특성, 검출과 제어)

  • Ahn, Sung-Il;Azzouny, Rehab A.;Huyen, Tran Thi Thanh;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • This study was to review the classification, detection and control of bacteriophage in fermented dairy products. Bacteriophage has lytic and/or lysogenic life cycles. Epidemiologically speaking, detected major phages are c2, 936 and p335. Among them p335 has been the largest concern in dairy industry. Traditionally, various analytical technologies, such as spot, starter activity, indicator test, ATP measurement and conductimetric analysis, have been used for the phage detection. In recent years, advanced methods such as flow cytometric method, petrifilm, enzyme linked immunosorbent assay (ELISA) and multiflex PCR diagnostic kit have been deveoloped. The phage contamination has been controlled by using heat, high-pressure treatment, and the combinations of heat and pressure, and/or chemical. Also some starter cultures with phage-resistant character have been developed to minimize the concentration of phages in dairy product. Bacteriophage inhibition media such as calcium medium was also mentioned. To prevent the contamination of bacteriophage in dairy industry, further researches on the detection and control of phage, and phage resistant starters are necessary in the future.

Physiological Characteristics and Immunomodulating Activity of Streptococcus macedonicus LC743 Isolated from Raw Milk

  • Cho, Seong-A;Kim, Kee-Sung;Do, Jeong-Ryong;Kim, Sae-Hun;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.6
    • /
    • pp.957-965
    • /
    • 2010
  • To develop a new starter culture for fermented milk, Streptococcus macedonicus LC743 was isolated from raw milk and its physiological characteristics were investigated. S. macedonicus LC743 showed good immunomodulating activity compared to the index LAB starters tested. The optimum growth temperature of S. macedonicus LC743 was $40^{\circ}C$, and it took 18 h to reach pH 4.34 under these conditions. S. macedonicus LC743 showed higher sensitivity to novobiocin in a comparison of 15 different antibiotics and showed the highest resistance to gentamycin. It also showed higher activities of leucine arylamidase and acid phosphatase. Moreover, it was comparatively tolerant to bile juice and acid and displayed high resistance to Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus with rates of 80.0%, 68.42%, and 81.54% respectively. These results demonstrate that S. macedonicus LC743 could be an excellent starter culture for fermented milk with a high level of immunomodulating activity.

Isolating Microorganisms to Ferment Traditional Cheongtaejeon (발효차 청태전 제조용 미생물의 분리)

  • Park, Jung-Suk;Cho, Jung-Il
    • Journal of the Korean Society of Food Culture
    • /
    • v.26 no.2
    • /
    • pp.190-197
    • /
    • 2011
  • Chungtaejeon is a traditional tea introduced in the age of the Three States and is the only "Don-cha" culture in the world that survived on the southwestern shore of Korea. To restore Chungtaejeon and to make the tea with consistent quality, the microorganisms involved in traditional type fermentation of Chungtaejeon were isolated, and the tea was prepared with high fermentation ability starters. The sensuous characteristics of Chungtaejeon were also examined. Only Bacilli were found in 3 and 5 year aged Chungtaejeon samples. The Lactobacilli were isolated from properly fermented kimchi and one of them showed high growth capability in media containing green tea extract and also showed strong antagonistic activity against methicillin-resistant Staphylococcus aureus, S. aureus, Salmonella, and E. coli. It was identified and named Lactobacillus plantarum CHO25. Chungtaejeon was fermented with a single starter of L. plantarum CHO25 and with a mixed starter (L. plantarum CHO25, Saccharomyces cerevisiae and Bacillus amyloliquefaciens CHO104). The single fermented sample had the highest cell growth after 5 days of inoculation and the level decreased slowly thereafter. The mixed fermented sample showed strong growth of S. cerevisiae. The highest hunter values were the a value of the single fermented sample and the b value of the mixed sample. The single fermented tea showed the best incense score.

The Effect of Diffusion Starters' Centralities on Diffusion Extent in Diffusion of Competing Innovations on a Social Network (사회 네트워크 상의 기술 확산 경쟁에서 확산 시작 지점의 중심성에 따른 확산 경쟁의 결과)

  • Hur, Wonchang
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.4
    • /
    • pp.107-121
    • /
    • 2015
  • Diffusion of innovation is the process in which an innovation is communicated through certain channels over time among the members of a social system. The literatures have emphasized the importance of interpersonal network influences on individuals in convincing them to adopt innovations and thereby promoting its diffusion. In particular, the behavior of opinion leaders who lead in influencing others' opinion is important in determining the rate of adoption of innovation in a system. Centrality has been recognized as a good indicator that quantifies a node's influences on others in a given network. However, recent studies have questioned its relevance on various different types of diffusion processes. In this regard, this study aims at examining the effect of a node exhibiting high centrality on expediting diffusion of innovations. In particular, we considered the situation where two innovations compete with each other to be adopted by potential adopters who are personally connected with each other. In order to analyze this competitive diffusion process, we developed a simulation model and conducted regression analyses on the outcomes of the simulations performed. The results suggest that the effect of a node with high centrality can be substantially reduced depending upon the type of a network structure or the adoption thresholds of potential adopters in a network.

A Control Circuit for Blinking and Color Variaton Operations of Fluorescent Lamps (형광램프의 점멸 및 가변색 동작을 위한 제어회로)

  • 송상빈;곽재영;여인선
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.1
    • /
    • pp.28-35
    • /
    • 2001
  • In this paper, an electronic starter and controller are develor:ed for blinking and color variation oI:'||'&'||'pound;fations of fluorescent ]arrps, which would be suitElble for use in an advertising panel. The deve1oporl electrornc starters enable single-pulse ignition for fluorescent lamps of 2O-4Q[W] according to the start signal of controller, and the lamp life is e;.qxccted to go beyond 3,OCO hours with blinking o]:ffations for minimum 0.2[s]. Also, the controller based on a micro-controller can handle up to 128 fluorescent lanlpS and have ten modes of blinking pattems and 7-color variation mxles.

  • PDF

S-Adenosyl-L-methionine (SAM) Production by Lactic Acid Bacteria Strains Isolated from Different Fermented Kimchi Products

  • Lee, Myung-Ki;Lee, Jong-Kyung;Son, Jeong-A;Kang, Mun-Hui;Koo, Kyung-Hyung;Suh, Joo-Won
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.857-860
    • /
    • 2008
  • S-Adenosyl-L-methionine (SAM) is a bioactive material used in the treatment of depression, osteoarthritis, and liver disease. To obtain lactic acid bacteria (LAB) producing high concentrations of SAM, LAB were isolated from commercial kimchi and from prepared kimchi products that contained shrimp jeotgal (fermented salty seafood) or sand lance jeotgal or that were fermented at 5 or $10^{\circ}C$, respectively, when pH was 4.2 to 4.8 and titratable acidity 0.6 to 0.9. Among the 179 LAB strains isolated from the fermented kimchi products, the genus Leuconostoc produced the highest intracellular level of SAM (1.58 mM) and Lactobacillus produced the second highest level (up to 1.47 mM) in the strain culture. This is the first study to quantify SAM in LAB isolated from fermented kimchi prepared by a general kimchi recipe. Ultimately, the selected strains (Leuconostoc mesentroides subsp. mesenteroides/dextranicum KSK417, L. mesentroides subsp. mesenteroides/dextranicum KJM401, and Lactobacillus bifermentans QMW327) could be useful as starters to manufacture fermented foods containing high levels of SAM.

Cultivation of Psychrotrophic Lactic Acid Bacteria Isolated from Kimchi in Korean Cabbage-Juice (김치에서 분리한 저온성 젖산균의 배추즙에서의 배양)

  • 소명환;오현진
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.4
    • /
    • pp.392-398
    • /
    • 1994
  • The purpose of this study was to predict the actions and roles of 10 strains of representative psychrotrophic lactic acid bacteria, in kimchi fermentation, which were Isolated from kimchi and identified as Leu. mesenteroides subsp. mesenteroides, Leu. mesenteroides subsp. dextranicum, Leu. lactic, Leu. paramesenteroides, Lac. bavaricus and Lac. homahiochii. For this, 0.01% of tactic starters were inoculated in germ free Korean cabbage-juice containing 2.5% NaCl, and then cultivated for 14 days at 1$0^{\circ}C$. All strains grew actively, and reached their stationary phase in 4 days. In death phase, the slopes of curves were much different each other by strains. The acidity increased rapidly between 2 and 4 days, and the pH decreased rapidly between 2 and 3 days. The total acidity was 0.5B~0.75%, the volatile acidity 0.04~0.18% and the pH 3.55~3.85, in final cultures. The cultures of Leuconostocs were better than those of lactobacilli on flavor test. It was thought that the ripening periods of kimchi would be much reduced, and that the over ripening would be also somewhat avoided, when these strains were used as starter bacteria for kimchi and the kimchi was fermented at low temperature.

  • PDF

Kimchi and Its Functionality (김치와 김치의 건강기능성)

  • Park, Kun-Young;Hong, Geun-Hye
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.2
    • /
    • pp.142-158
    • /
    • 2019
  • Kimchi is a traditional Korean fermented vegetable probiotic food. The use of high quality ingredients and predominant LAB (lactic acid bacteria)-whether it be ambient bacteria or adding starters, low temperature and facultative anaerobic condition for the fermentation are important factors for preparing kimchi with better taste and functionality. The predominated LAB genera are Leuconostoc, Lactobacillus, and Weissella in kimchi fermentation. The representative species are Leu. mesenteroides, Leu. citrium, Lab. plantarum, Lab. sakei, and Wei. koreensis. Kimchi, especially the optimally fermented kimchi, has various health benefits, including control of colon health, antioxidation, antiaging effects, cancer preventive effect, antiobesity, control of dyslipidemic and metabolic syndrome, etc.; due to the presence of LAB, various nutraceuticals, and metabolites from the ingredients and LAB. The kimchi LAB are good probiotics, exhibiting antimicrobial activity, antioxidant, antimutagenic and anticancer effects, as well as immunomodualatory effect, antiobesity, and cholesterol and lipid lowering effects. Thus, kimchi ingredients, LAB, fermentation methods, and metabolites are important factors that modulate various functionalities. In this review, we introduced recent information showing kimchi and its health benefits in Korean Functional Foods (Park & Ju 2018).

Strain-specific Detection of Kimchi Starter Leuconostoc mesenteroides WiKim33 using Multiplex PCR

  • Lee, Moeun;Song, Jung Hee;Park, Ji Min;Chang, Ji Yoon
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.2
    • /
    • pp.208-216
    • /
    • 2019
  • Leuconostoc spp. are generally utilized as kimchi starters, because these strains are expected to have beneficial effects on kimchi fermentation, including improvement of sensory characteristics. Here, we developed a detection method for verifying the presence of the kimchi starter Leuconostoc mesenteroides WiKim33, which is used for control of kimchi fermentation. A primer set for multiplex polymerase chain reaction was designed based on the nucleotide sequence of the plasmids in strain WiKim33, and their specificity was validated against 45 different strains of Leuconostoc spp. and 30 other strains. Furthermore, the starter strain consistently tested positive, regardless of the presence of other bacterial species in starter kimchi during the fermentation period. Our findings showed that application of a strain-specific primer set for strain WiKim33 presented a rapid, sensitive, and specific method for detection of this kimchi starter strain during natural kimchi fermentation.

In situ analysis of the bacterial community associated with the Korean salty fermented seafood jeotgal

  • Hyunjun Kim;Yoomin Ahn;Chulhee Park;Eungbin Kim
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.515-522
    • /
    • 2021
  • Jeotgal is a salty and fermented traditional Korean fish sauce. Unlike most other previous studies that investigated samples purchased from retail markets, this study focused on samples of jeotgal with traceable history to Yeonggwang, a timehonored fishing village in Korea. Three jeotgal samples, which were made from small yellow croakers, largehead hairtail, and miscellaneous fish, were selected based on information obtained from interviews with local craftsmen and literature reviews. Bacterial community profiles of the three jeotgal samples were investigated to identify indicator (and potentially core) bacteria for jeotgal ripening. The 16S rRNA gene-based metagenomic analysis revealed that the dominant phyla and classes, (Gammaproteobacteria, Betaproteobacteria, Bacilli, and Clostridia) of the three different jeotgal were identical, albeit with different composition ratios. Diversification was evident beginning at the order level. Interestingly, each dominant order was mainly comprised of single members even at the genus level. The dominant genera included Halomonas, Tetragenococcus, Halanaerobium, Pseudomonas, Massilia, and Lentibacillus. This observed genus-level heterogeneity suggests that there are diverse bacterial signatures in jeotgal and that these can be used as indicators for jeotgal ripening and/or as starters to increase its sensory quality and functionality.