• Title/Summary/Keyword: starter culture

Search Result 300, Processing Time 0.026 seconds

Lactobacillus plantarum (KACC 92189) as a Potential Probiotic Starter Culture for Quality Improvement of Fermented Sausages

  • Ba, Hoa Van;Seo, Hyun-Woo;Seong, Pil-Nam;Kang, Sun-Moon;Kim, Yoon-Seok;Cho, Soo-Hyun;Park, Beom-Young;Ham, Jun-Sang;Kim, Jin-Hyoung
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.189-202
    • /
    • 2018
  • This study was conducted to evaluate the effects of fermenting temperature on the applicability of Lactobacillus plantarum for production of fermented sausages as starter cultures, and its applicable efficiency was also compared with those inoculated with commercial starter culture or non-inoculated control. The L. plantarum isolated from a naturally-fermented meat, identified by 16S rDNA sequencing and again identified by de novo Assembly Analysis method was used as a starter culture. Six treatments: 3 with L. plantarum at different fermenting temperatures (20, 25 and $30^{\circ}C$), and other 3 treatments (1 with commercial starter culture, 1 with its mixture with L. plantarum and 1 non-inoculated control) fermented under the same conditions ($25^{\circ}C$) were prepared. Results revealed that the fermenting temperature considerably affected the pH change in samples added with L. plantarum; the highest pH drop rate (1.57 unit) was obtained on the samples fermented at $30^{\circ}C$, followed by those at $25^{\circ}C$ (1.3 unit) and $20^{\circ}C$ (0.99 unit) after 4 days fermentation. Increasing the temperature up to $30^{\circ}C$ resulted in significantly lower spoilage bacteria count (5.15 log CFU/g) and lipid oxidation level in the products inoculated with L. plantarum. The sensory analysis also showed that the samples added with L. plantarum at $30^{\circ}C$ had significantly higher odor, taste and acceptability scores than those fermented at lower temperatures. Under the same processing condition, although the L. plantarum showed slightly lower acidification than the commercial starter culture, however, it significantly improved the eating quality of the product.

Quality characteristics and preparing of solid starter using fungal strains for Takju (탁주용 곰팡이 고체종국 제조 및 품질 특성)

  • Baek, Chang-Ho;Baek, Seong Yeol;Mun, Ji-Young;Choi, Han-Seok;Kang, Ji-Eun;Jung, Seok-Tae;Yeo, Soo-Hwan
    • Food Science and Preservation
    • /
    • v.23 no.6
    • /
    • pp.797-803
    • /
    • 2016
  • In this study, we investigated the effect of fermentation conditions on the amylolytic and proteolytic activities of Aspergillus luchuensis strain 74-5 and Aspergillus oryzae strain 75-2, which are used in the preparation of the starter culture, for Takju (Korean traditional rice wine). The starter culture was optimized using different conditions, such as inoculum size, inoculation temperature, and incubation time. The enzyme activities under each condition were measured. In the A. luchuensis strain 74-5 starter culture, the ${\alpha}-amylase$ and glucoamylase activities increased, however the activity of acidic protease decreased as the diluent to starter culture ratio increased. In the A. oryzae 75-2 starter culture, all enzyme activities were maintained at a higher level even at 5% inoculation ratio. Higher enzyme activities were observed in the middle range of inoculation temperature (35, $40^{\circ}C$), than in the lower range (20, $30^{\circ}C$). Enzyme activity in the starter culture varied with incubation time, however it was the highest at 144 and 120 hr, respectively, for A. luchuensis strain 74-5 and A. oryzae strain 75-2. The spore count of the starter culture was approximately $2{\times}10^7$ during fermentation, out of which contamination by aerobic bacteria was about $3{\times}10^3$. The results suggested that the starter culture of each strain could be used as an inoculum for fermentation. However, we needs to conduct further research for the selection of suitable diluting agents as well as drying methods to reduce the contamination by aerobic bacteria, while retaining the enzyme activity.

Effect on Sucrose, Aspartame and Oligosaccharide Added as Sweeteners for the Fermentation of Yoghurt Starter (Sucrose, Aspartame 및 Oligo당의 첨가가 Yoghurt Starter의 발효에 미치는 영향)

  • Kim, Hyun Soo;Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.156-169
    • /
    • 1997
  • This experiment was carried out to exame the effects of sweeteners, sucrose(2.0~10.0%), aspartame(0.01~0.05%) and oligosaccharide(3.6~11.6%) on the fermentation of yoghurts by single or mixed culture (Lact. bulgaricus and Str. thermophilus). The acidity, pH and number of lactic acid bacteria in yoghurts added different level of sweeteners were examined by the fermentation time. The results were summarized as follows; 1. The acidity increased and the pH decreased more rapidly by 4.0% sucrose and 5.6% oligosaccharide. By the addition of 8.0% sucrose and 9.6% oligosaccharide the acidity and pH of yoghurts were changed less significantly. 2. The number of Lact. bulgaricus and Str. thermophilus increased more rapidly by 4.0% sucrose and 5.6% oligosaccharide and increased slowly above those levels. 3. Aspartame as a sweeteners did not affect on the acidity, pH and number of lactic acid bacteria in yoghurts. 4. The number of lactic acid bacteria, acidity and pH in yoghurts added sucrose and oligosaccharide were affected more by single culture than by mixed culture.

  • PDF

Quality Characteristics of the Chungkookjang Fermented by the Mixed Culture of Bacillus natto and B. licheniformis (Bacillus natto와 B. licheniformis 혼합 Starter로 제초된 청국장의 품질특성)

  • 연규춘;김동호;김정옥;육홍선;조재민;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.2
    • /
    • pp.204-210
    • /
    • 2002
  • The quality characteristics and sensory evaluation of chungkookjang were investigated. The samples were prepared and fermented by the inoculation of Bacillus strains; B. subtilis, B. natto and B. licheniformis as a single starter, and mixed culture of B. natto and B. licheniformis on the industrialized model system. It was shown that microbial growth, protease activity, contents of amino-and ammonia-nitrogen and contents of organic acid were higher in B. subtilis inoculated sample, and were lower in B. licheniformis inoculated one. General quality characteristics of sample inoculated by mixed culture of B. natto and B. licheniformis took a middle position between each B. natto and B. licheniformis inoculated one. Fifty eight species of odor components were identified. Ethanol, 3-methyl-1-butanol, acetic acid, benzaldehyde and alkyl pyrazines were identified in all samples and most of other flavor components were strain specific. The contents of unpleasant smell components, alkyl pyrazines and benzaldehyde, were lower in B. licheniformis inoculated sample. The sensory evaluations showed that chungkookjang manufactured from mixed culture of B. natto and B.licheniformis was most acceptable. Therefore, results indicated that chungkookjang manufactured from mixed culture of B. natto and B. licheniformis induced better sensory quality than that of the control.

Pysicochemical and Bacteriological Properties of Yogurt made by Single or Mixed Cultures of L. bulgaricus and S. thermophilus (L. bulgaricus 와 S. thermophilus 의 단독 및 혼합배양에 의한 요구르트의 이화학적 미생물학적 특성)

  • Lee, Shin-Ho;Koo, Young-Jo;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.140-147
    • /
    • 1988
  • The pysicochemical and bacteriological properties of yogurts made by single or mixed cultures of L. bulgaricus FRI025 and S. thermophilus CHI were investigated. L. bulgaricus FRI025 which was isolated from raw milk was selected as starter culture among 22 strains of lactic culture by measuring viscosity, flavor, growth and acid production ability. The acid production and number of viable cell were increased by using L. bulgaricus FRI025 and S. thermophilus CHI together in ratio of apporximately 1:1. The pH, titratable acidity, viable cell number and viscosity of yogurt were 4.08, 1.14%, $2.5{\times}10^{10}/ml$ and 2100 cp after 9 hours incubation at $40^{\circ}C$, respectively. The pH and viable cell number were decreased on the other hand titratable acidity and viscosity were increased after 7 days of storage at $4^{\circ}C$. The changes of quality did not show significantly after storage. The selected starter was much higher than commercial yogurt starter in the acid production and growth of starter. The yogurt nanufactured with selected starter was better than with commercial yogurt in sensory evalution such as taste, texture, flavor and overall acceptability.

  • PDF

Effects of Starter Cultures on the Quality Traits of Electron Beam Irradiated Fermented Meat during Aging (전자선 조사된 원료육과 Stater Culture의 사용이 발효육의 숙성 중 품질에 미치는 영향)

  • Lim, Dong-Gyun;Seol, Kuk-Hwan;Lee, Moo-Ha
    • the MEAT Journal
    • /
    • s.35 winter
    • /
    • pp.46-55
    • /
    • 2008
  • The microbiological and physicochemical properties of irradiated (2 kGy) or non-irradiated fermented meats processed with or without a commercial starter culture were evaluated during fermentation and aging. The pH of irradiated (2 kGy) fermented meats with starter cultures dramatically decreased during fermentation and aging (p<0.05), and the final pH was 4.25. The total aerobic counts and lactic acid bacteria counts reflected the addition of the starter culture. As the fermentation progressed, the total aerobic counts closely paralleled the lactic acid bacteria counts. The TBARS values of irradiated fermented meats increased regardless of the treatment during fermentation and aging. These results show that the irradiated(electron-beam) meat/fat resulted in the reduction of the total microbes and survives lactic acid bacteria. The use of starter cultures in meat batters post-irradiation may be useful for the production of fermented meats.

  • PDF

Effects of Starter Cultures on the Quality Traits of Electron Beam Irradiated Fermented Meat during Aging (전자선 조사된 원료육과 Stater Culture의 사용이 발효육의 숙성 중 품질에 미치는 영향)

  • Lim, Dong-Gyun;Seol, Kuk-Hwan;Lee, Moo-Ha
    • Food Science of Animal Resources
    • /
    • v.27 no.3
    • /
    • pp.308-313
    • /
    • 2007
  • The microbiological and physicochemical properties of irradiated (2 kGy) or non-irradiated fermented meats processed with or without a commercial starter culture were evaluated during fermentation and aging. The pH of irradiated (2 kGy) fermented meats with starter cultures dramatically decreased during fermentation and aging (p<0.05), and the final pH was 4.25. The total aerobic counts and lactic acid bacteria counts reflected the addition of the starter culture. As the fermentation progressed, the total aerobic counts closely paralleled the lactic acid bacteria counts. The TBARS values of irradiated fermented meats increased regardless of the treatment during fermentation and aging. These results show that the irradiated (electron-beam) meat/fat resulted in the reduction of the total microbes and survives lactic acid bacteria. The use of starter cultures in meat batters post-irradiation may be useful for the production of fermented meats.

Manufactures of Functional Kimchi using Bifidobacterium Strain Producing Conjugated Linoleic Acid (CLA) as Starter (Conjugated linoleic acid(CLA) 생성균주를 starter로 이용한 기능성 김치의 제조)

  • Min, Sung-Gi;Kim, Jung-Hee;Kim, So-Mi;Shin, Hong-Sig;Hong, Gun-Hwa;Oh, Duk-Gun;Kim, Kyung-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.111-114
    • /
    • 2003
  • Conjugated linoleic acid (CLA), known to possess various beneficial effects such as anticarcinogenic, antioxidative, and cholesterol-depressing, has been used as a health supplementary food in Japan and the USA. Optimum condition for CLA production without causing changes in quality of kimchi was determined using Bifidobacterium sp., a CLA-producing microorganism, as a starter in culture broth, freeze-dried culture, and encapsulated culture. Results revealed encapsulation was most ideal for maintaining the ability of bacterium to produce CLA during kimchi fermentation. Exogenous linoleic acid (LA) which is a substrate for conversion to CLA was not added to kimchi since LA was already exists in red pepper. Changes in sensory properties of kimchi and production of CLA were measured after inoculation of the encapsulated starter. The optimum inoculation concentration of the encapsulated starter was 0.1% (w/w) for production of CLA without causing changes in kimchi taste.

Development of an Environmental Friend Additive Using Antibacterial Natural Product for Reducing Enteric Rumen Methane Emission (항균활성 천연물질을 이용한 반추위 메탄저감용 친환경 첨가제 개발)

  • Lee, A-Leum;Yang, Jinho;Cho, Sang-Buem;Na, Chong-Sam;Shim, Kwan-Seob;Kim, Young-Hoon;Bae, Gui-Seck;Chang, Moon-Baek;Choi, Bitna;Shin, Su-Jin;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.3
    • /
    • pp.491-502
    • /
    • 2014
  • The present study was conducted to investigate effective starter culture to improve biological activity of Asarum sieboldii. Antibacterial activity, antioxidant activity and reduction of enteric rumen methane production were used as criterions for biological activity. Ground A. sieboldii was added in MRS broth at 10% (w/v) and fermented by different starter cultures. Weissella confusa NJ28, Weissella cibaria NJ33, Lactobacillus curvatus NJ40, Lactobacillus brevis NJ42, Lactobacillus plantarum NJ45 and Lactobacillus sakei NJ48 were used for starter culture strains. Each starter culture was inoculated with 1% (v/v) ratio and fermentation was performed at $30^{\circ}C$ with agitation (150 rpm) for 48 h. MRS broth for the control was employed without starter culture. Then the fermentation growth was dried and extracted using ethyl alcohol. The growth of starter culture was detected at NJ40, NJ42, NJ45 and NJ48. And the highest cell growth was found in NJ40. Antibacterial activity against to Staphylococcus aureus, Listeria monocytogens, Mannheimia haemolytica and Salmonella gallinarum were observed in the extract fermented by NJ40 and NJ45. All treatments showed antioxidant activities, however, there were no significant differences (p>0.05). In in vitro rumen fermentation, negative control (NC) and positive control (PC) were assigned to without extract and with non-fermented A. sieboldii extract. Significant suppression of gas productions were detected in positive control and treatments compared to negative control (p<0.05). However, total volatile fatty acid production was not suppressed. Significant methane reduction per total volatile fatty acid productions were found in positive control and NJ45 treatment (p<0.05). The present study suggested a fermentation of A. sieboldii using NJ45 strain could improve its biological activity and make possible for its use in bio additive for enteric rumen methane mitigation without suppression of animal productivity.

Investigation of Flavor-Forming Starter Lactococcus lactis subsp. lactis LDTM6802 and Lactococcus lactis subsp. cremoris LDTM6803 in Miniature Gouda-Type Cheeses

  • Lee, Hye Won;Kim, In Seon;Kil, Bum Ju;Seo, Eunsol;Park, Hyunjoon;Ham, Jun-Sang;Choi, Yun-Jaie;Huh, Chul Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1404-1411
    • /
    • 2020
  • Lactic acid bacteria (LAB) play an important role in dairy fermentations, notably as cheese starter cultures. During the cheese production and ripening period, various enzymes from milk, rennet, starter cultures, and non-starter LABs are involved in flavor formation pathways, including glycolysis, proteolysis, and lipolysis. Among these three pathways, starter LABs are particularly related to amino acid degradation, presumably as the origins of major flavor compounds. Therefore, we used several enzymes as major criteria for the selection of starter bacteria with flavor-forming ability. Lactococcus lactis subsp. lactis LDTM6802 and Lactococcus lactis subsp. cremoris LDTM6803, isolated from Korean raw milk and cucumber kimchi, were confirmed by using multiplex PCR and characterized as starter bacteria. The combinations of starter bacteria were validated in a miniature Gouda-type cheese model. The flavor compounds of the tested miniature cheeses were analyzed and profiled by using an electronic nose. Compared to commercial industrial cheese starters, selected starter bacteria showed lower pH, and more variety in their flavor profile. These results demonstrated that LDTM6802 and LDTM6803 as starter bacteria have potent starter properties with a characteristic flavor-forming ability in cheese.