Manufactures of Functional Kimchi using Bifidobacterium Strain Producing Conjugated Linoleic Acid (CLA) as Starter

Conjugated linoleic acid(CLA) 생성균주를 starter로 이용한 기능성 김치의 제조

  • Published : 2003.02.01

Abstract

Conjugated linoleic acid (CLA), known to possess various beneficial effects such as anticarcinogenic, antioxidative, and cholesterol-depressing, has been used as a health supplementary food in Japan and the USA. Optimum condition for CLA production without causing changes in quality of kimchi was determined using Bifidobacterium sp., a CLA-producing microorganism, as a starter in culture broth, freeze-dried culture, and encapsulated culture. Results revealed encapsulation was most ideal for maintaining the ability of bacterium to produce CLA during kimchi fermentation. Exogenous linoleic acid (LA) which is a substrate for conversion to CLA was not added to kimchi since LA was already exists in red pepper. Changes in sensory properties of kimchi and production of CLA were measured after inoculation of the encapsulated starter. The optimum inoculation concentration of the encapsulated starter was 0.1% (w/w) for production of CLA without causing changes in kimchi taste.

공역리놀레산(CLA)은 항암, 항산화작용, 콜레스테롤저하 등의 효과를 지닌 물질로 알려져 있으며, 일본과 미국에서는 건장보조식품으로 널리 이용되고 있다. 본 연구에서는 CLA 생산능력이 있는 미생물을 김치제조 시에 스타터로 첨가하여 김치의 맛에는 변화를 가져오지 않으면서 CLA를 생산하는 최적조건을 밝히기 위해 혐기성 스타터 비피도박테리아를 배양액상태, 냉동건조된 상태, 캡슐화된 상태 등의 세가지 형태로 접종하였다. 이들 세가지 접종 방법 중 캡슐화된 상태로 스타터를 접종 시에 김치발효 중의 박테리아의 CLA 생산능력이 최적상태로 유지되었다. 김치 제조시에 부재료로 첨가되는 고추에는 상당량의 리놀레산(LA)이 함유되어 있음이 확인되어 추가로 LA를 첨가하지 않았다. 캡슐화된 비피도박테리아 스타터를 접종한 후 김치의 맛과 CLA생산 추이를 살펴본 결과 김치 맛에 영향을 끼치지 않고 CLA를 생산할 수 있는 최적의 접종량은 0.1%(w/w)임이 밝혀졌다.

Keywords

References

  1. Han, H.U., Lim, C.R. and Park, H.K. Determination of microbial community as an indicator of kimchi fermentation. Korean J. Food Sci. Technol. 22: 26-32 (1990)
  2. Lee, C.H., Ko, C.H. and Ha, D.M. Microfloral change of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Korean J. Appl. Microbiol. Biotechnol. 20: 102-106 (1992)
  3. Kang, S.M., Yang, W.S., Kim, Y.C., Joung, E.Y. and Han, Y. G. Strain improvement of Leuconostoc mesenteroides for kimchi fermentation and effect of starter. Korean J. Appl. Mircobiol. Biotechnol. 23: 461-471 (1995)
  4. Kim, H.J., Kang, S.M. and Yang, C.B. Effects of yeast addition as starter on fermentation of kimchi. Korean J. Food. Sci. Technol. 27: 404-411 (1989)
  5. Chem, K.H., Mcfeeters, R.F., Daeshel, M.A., and Fleming, H.P. A differential medium for enumeration of homofermentative lactic aicd bacteria. J. Food Sci. 53:1382-1389 (1987)
  6. So, M.H., Shin, M.Y. and Kim, Y.B. Effects of psychrotrophic lactic acid bacterial starter on kimchi fermentation. Korean J. Food. Sci. Technol. 28: 806-812 (1996)
  7. Ha, J.H. Analysis of volatile organic compounds in kimchi absorbed in SPME by GC-AED and GC-MSD. J. Korean Soc. Food Sci. Nutr. 31: 543-545 (2002) https://doi.org/10.3746/jkfn.2002.31.3.543
  8. Lee, J.Y., Park, Y.S., Kim, Y.S. and Shin, D.H. Antimicrobial characteristics of metabolites of lactic acid bacteria isolated from feces of newborn baby and from dongchimi. Korean J. Food Sci. Technol. 34: 472-479 (2002)
  9. Park, Y.H. and Song, H.J. Antimicrobial activity of Lactobacillus plantarum Lp-2 Isolated from kimchi. Korean J. Appl. Microbiol. Biotechnol. 19: 637 (1991)
  10. Song, H.J. and Park, Y.H. Effect of lactic acid bacteria in the growth of yeast from Mul-kimchi. Korean J. Appl. Microbiol. Biotechnol. 20: 219-224 (1992)
  11. Mheen, T.I. and Kwon, T.W. Effect of temperature and salt concentration on kimchi fermentation. Korean J. Food Sci. Technol. 16: 443-450 (1984)
  12. Choi, K.S., Sung, C.S., Kim, M.H. and Oh, T.K. Fermentation method of kimchi using halophilic Lactobacillus sp. HL-48 and lactic acid. Korean J. Microbiol. Biotechnol. 27: 246-251 (1999)
  13. Park, W.P., Park, K.D., Cheong, Y.J. and Lee, I.S. Effect of calcium powder addition in the quality characteristics of kimchi. J. Korean Soc. Food Sci. Nutr. 31: 428-243 (2002) https://doi.org/10.3746/jkfn.2002.31.3.428
  14. Lee, S.H., Park, N.Y. and Choi, W.J. Changes of the lactic acid bacteria and selective inhibitory substances against homo and hetero lactic acid bacteria isolated from kimchi. Korean J. Appl. Microbiol. Biotechnol. 27: 410-414 (1999)
  15. Ha, Y.L., Grimm, N.K. and Pariza, M.W. Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8: 1881-1887 (1987) https://doi.org/10.1093/carcin/8.12.1881
  16. Devery, R.A. and Miller, C.S. Conjugated linoleic acid and oxidative behavior in cancer cells. Biochem Soc. Trans. 9: 341-344 (2001)
  17. Pariza, M., Park, Y. and Cook, M. The biologically active isomers of conjugated linoleic acid. Prog. Lipid Res. 40: 283-298 (2001) https://doi.org/10.1016/S0163-7827(01)00008-X
  18. Chin, S.F., Liu, W., Storkson, J.M., Ha, Y.L. and Pariza, M.W. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J. Food Compos. Anal. 5: 185-197 (1992) https://doi.org/10.1016/0889-1575(92)90037-K
  19. Nicolas, R.J., Rogers, E.J., Kritchevsky, D., Scimeca, J.A. and Huth, P.J. Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters. Artery 22: 266-277 (1997)
  20. Miller, C.C., Park, Y., Pariza, M. W. and Cook, M.E. Feeding conjugated linoleic acid to animals partially overcomes catabolic responses due to endotoxin injection. Biochem. Biophys. Res. Commun. 198: 1107-1112 (1994) https://doi.org/10.1006/bbrc.1994.1157
  21. AOAC. Official Methods of Analysis, 15th ed. Association of Official Analytical Chemists, Washington, DC, USA (1990)
  22. Lin, T.Y. Conjugated linoleic acid concentration as affected by lactic culture and additives. Food Chem. 69: 27-31 (2000) https://doi.org/10.1016/S0308-8146(99)00218-6
  23. Lee, I.S., Son, M.G., Gi, Y.H. and Park, J.S. Experimental Statistics. Hakmunsa, Seoul (1981)
  24. DeLany, J.P., Blohm, F., Truett, A.A., Scimeca, J.A. and West, D.B. Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. Am. J. Physiol. Apr. 276-278 (1999)