• Title/Summary/Keyword: stand-level density

Search Result 32, Processing Time 0.028 seconds

Development of a Stand Density Management Diagram for Teak Forests in Southern India

  • Tewari, Vindhya Prasad;Alvarez-Gonz, Juan Gabriel
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.3
    • /
    • pp.259-266
    • /
    • 2014
  • Stand Density Diagrams (SDD) are average stand-level models which graphically illustrate the relationship between yield, density and mortality throughout the various stages of forest development. These are useful tools for designing, displaying and evaluating alternative density regimes in even-aged forest ecosystems to achieve a desired future condition. This contribution presents an example of a SDD that has been constructed for teak forests of Karnataka in southern India. The relationship between stand density, dominant height, quadratic mean diameter, relative spacing and stand volume is represented in one graph. The relative spacing index was used to characterize the population density. Two equations were fitted simultaneously to the data collected from 27 sample plots measured annually for three years: one relates quadratic mean diameter with stand density and dominant height while the other relates total stand volume with quadratic mean diameter, stand density and dominant height.

Optimum Stand Density Control Considering Stability in Larix kaempferi Forests (임분 안정성을 고려한 일본잎갈나무 임분밀도 관리의 적정 수준)

  • Park, Joon Hyung;Chung, Sang Hoon;Kim, Sun Hee;Lee, Sang Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.202-210
    • /
    • 2020
  • This study investigated the optimal levels of stand density control considering the stability of Larix kaempferi stands. A stand density management diagram was developed from 259 sample plots. Based on these data, we determined an optimal level of the stand density control by identifying the relationship between the relative yield index (Ry) and height-to-diameter ratio. The estimated r-square (R2) of the stand density management diagram is 0.600. The analysis of the relationship between Ry and the slender tree incidence showed that when the stand density exceeded a certain threshold and the ratio of slender trees rapidly increased. The critical value of Ry was 0.63. The results of this study are expected to contribute to the establishment of stand management strategies that can reduce damage from natural causes, such as wind and snow, and to develop stand practice systems for the improved productivity of commercial forests.

The Production Objectives and Optimal Standard of Density Control Using Stand Density Management Diagram for Pinus densiflora Forests in Korea (임분밀도관리도를 이용한 소나무림의 적정 임분밀도 관리 기준 및 수확목표)

  • Park, Joon-hyung;Jung, Su-Young;Yoo, Byung-oh;Lee, Kwang-Soo;Park, Yong-bae;Kim, Hyung-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.457-464
    • /
    • 2017
  • This study has utilized the stand density management diagram to devise an efficient management standard for the stand density for Pinus densiflora that secures the health of the stands and predicted the harvest goals. The appropriate stand control level was estimated by modeling the relationship of the relative yield index (Ry) to the ratio of slender trees within the stand through an exponential function; the coefficient of determination ($R^2$) was found to be 0.424 according to the estimation. The ratio of slender trees within the stand showed a tendency of rapid increase at a certain relative yield index; with this relational function, the appropriate Ry value of 0.84 was obtained. By estimating the curve of the Ry value 0.84, which was the appropriate stand density management level, as well as the height of dominant trees in the central region of Korea, the production objective for each site index was set. Assuming that the final age by the site indices ranged from 10 to 16 for the P. densiflora in central region of Korea, the number of production was estimated to be between 426 to 1,311 trees per ha. It was predicted that the production of medium-diameter logs larger than 30 cm in diameter is possible for the target DBH at a site index of more than 16; small-diameter logs larger than 20 cm in diameter for site indices 12 and 14 enabled, and small-diameter logs of less than 20 cm for site index 10.

Assessment of Carbon Storage Capacity of Stands in Abandoned Coal Mine Forest Rehabilitation Areas over time for its Development of Management Strategy (폐탄광 산림복구지 관리방안 도출을 위한 산림복구 후 시간경과에 따른 임분탄소저장량 평가)

  • Mun Ho Jung;Kwan In Park;Ji Hye Kim;Won Hyun Ji
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • The objective of this study was to develop a management strategy for the recovery of carbon storage capacity of abandoned coal mine forest rehabilitation area. For the purpose, the biomass and stand carbon storage over time after the forest rehabilitation by tree type for Betula platyphylla, Pinus densiflora, and Alnus hirsuta trees which are major tree species widely planted for the forest rehabilitation in the abandoned coal mine were calculated, and compared them with general forest. The carbon storage in abandoned coal mine forest rehabilitation areas was lower than that in general forests, and based on tree species, Pinus densiflora stored 48.9%, Alnus hirsuta 41.1%, and Betula platyphylla 27.0%. This low carbon storage is thought to be caused by poor growth because soil chemical properties, such as low TOC and total nitrogen content, in the soil of abandoned coal mine forest rehabilitation areas, were adverse to vegetation growth compared to those in general forests. DBH, stand biomass, and stand carbon storage tended to increase after forest rehabilitation over time, whereas stand density decreased. Stand' biomass and carbon storage increased as DBH and stand density increased, but there was a negative correlation between stand density and DBH. Therefore, after forest rehabilitation, growth status should be monitored, an appropriate growth space for trees should be maintained by thinning and pruning, and the soil chemical properties such as fertilization must be managed. It is expected that the carbon storage capacity the forest rehabilitation area could be restored to a level similar to that of general forests.

Analysis of Phytoncide Concentration and Micrometeorology Factors by Pinus Koraiensis Stand Density (잣나무 임분밀도에 따른 피톤치드 농도 및 임내환경 특성에 관한 연구)

  • Jo, Yeseul;Park, Sujin;Jeong, Miae;Lee, Jeonghee;Yoo, Rheehwa;Kim, Cheolmin;Lee, Sangtae
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.3
    • /
    • pp.205-216
    • /
    • 2018
  • Objectives: Scientific verification for health effects has been constantly demanded through the forest healing factors. In this study, phytoncide concentration which is one of the forest healing factors, was investigated according to stand density, season and visiting time, and analyzed correlation with micrometeorology factors. Methods: Total volatile organic compounds (TVOCs) and Natural volatile organic compounds (NVOCs) were collected using a measuring instrument which is connected to an air pump with the Tenax TA tube. The 32NVOCs were selected through the detailed criteria of adequacy assessment for recreational forest. The statistical analysis (correlation and stepwise regression analysis) was conducted between phytoncide concentration and micrometeorology factors. Results: NVOCs concentration linearly increased according to stand density. The high level showed in the summer (p<0.05), and there is no significant difference according to visiting hours of the Healing forest. NVOCs is a negative correlation with solar radiation, PAR and wind direction, and a positive correlation with relative humidity and temperature (p<0.01). NVOCs increased following the increase of humidity and temperature ($R^2=0.55$). Conclusions: Phytoncide linearly increased according to stand density, and showed the correlation significantly with microclimate factors. In future, these results will be utilized as a basic material to promote the generation of phytoncide, which positively influences human health promotion and manage the forest welfare space.

Development and Validation of the Stand Density Management Diagram for Pinus densiflora Forests in Korea (소나무 임분밀도관리도 작성 및 실용성 검정)

  • Park, Joon Hyung;Lee, Kwang Soo;Yoo, Byung Oh;Park, Yong Bae;Jung, Su Young
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.342-350
    • /
    • 2016
  • This study aims to make the stand density management diagram which is very useful for establishing systematic management plan and obtaining management goal in Pinus densiflora forest. To estimate 5 models mainly composed of stand density management diagram, we used total of 1,886 sample plots having more than 75% of the total basal area of the pine trees in each stand. To test the goodness of fit, $X^2$ was computed with a significance level of 5%, and the acceptable error range as 20%. Also standard deviation of the model was $34.59m^3{\cdot}ha^{-1}$, minimum acceptable error range was 16.59% and coefficient of variation was 22.11%. If we use the stand density management diagram, it would be useful to establish the timber yield and thinning plan understanding the pathway of stand density management.

Stand Density Control by Selection System in Pyungchang Area, Gangwon Province (강원도 평창지역 택벌림화 작업지의 임분밀도 조절에 관한 연구)

  • Baek, Ju-Hyoun;Yim, Jong-Su;Shin, Man-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.136-143
    • /
    • 2010
  • This study was conducted to provide basic information on the management of natural deciduous forests by presenting suitable stand density over time for natural deciduous forests in Pyungchang Area. The stand density index(SDI) for the sampling point was also computed. The cutting scenarios were adopted by considering the SDI estimated in the sampling point. And then, simulation cutting was enforced to the stand. Cutting scenarios consisted of three cutting levels, with the period of 5 years where each suitable cutting level of selection system will not have the SDI over the maximum SDI throughout 30 years and consider harvest after 30 years. As a result of the simulation cutting, it was found that removing 12% and 14% of basal area per each time kept proper stand density while removing 10% exceed to the adequate basis. From an economic point of view, it was concluded that removal 12% of basal area would be the most suit cutting level in selection system.

Population persistence of the perennial kelp Eisenia arborea varies across local spatial scales

  • Gossard, Daniel J.;Steller, Diana L.
    • ALGAE
    • /
    • v.37 no.1
    • /
    • pp.63-74
    • /
    • 2022
  • Perennial stipitate kelps are globally distributed and individual species can inhabit broad latitudinal ranges, expressing notably longevous persistence. Despite the foundational role kelps provide to their communities, little is known about the variability in persistence of the stipitate kelps at local spatial scales. We studied the population persistence of Eisenia arborea, a heat- and wave force-tolerant perennial stipitate kelp with a distributional range extending from British Columbia to south of the range limit of all other northeast Pacific kelps, in Baja California Sur, Mexico. Persistence characteristics for E. arborea among sites were compared and used to test the hypothesis that stand persistence varied at local spatial scales around Isla Natividad, a Pacific island off the Baja California peninsula with documented spatiotemporal environmental heterogeneity. Collected individuals around the island were "aged" using the previously validated age estimation technique of counting annual cortical dark rings. After detecting no significant differences among sites in the covariation between estimated ages for collected individuals and stipe length, we utilized in-situ population-level stipe length measurements to more rapidly predict age structures within six stands around the island. Predicted age structures, and associated stand densities, revealed persistence characteristics and density varied at local scales and a strong positive relationship existed between stand density and stand mean and maximum ages. We speculate that stands responded differently to deterministic influences (e.g., the 2014-2016 marine heatwave and / or competition with Macrocystis) resulting in heterogenous local persistence of this foundation species.

Species Diversity, Composition and Stand Structure of Tropical Deciduous Forests in Myanmar

  • Oo, Thaung Naing;Lee, Don Koo;Combalicer, Marilyn;Kyi, Yin Yin
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.2
    • /
    • pp.171-180
    • /
    • 2008
  • The characterization of tree species and forest stand conditions is useful in the planning of activities aimed to conserve biodiversity. The main objective of this study was to describe tree species diversity, species composition and stand structure of tropical deciduous forests distributed in three regions in Myanmar. Forest inventory was conducted in the Oktwin teak bearing forest, the Letpanpin community forest and Alaungdaw Kathapa National Park. According to the Jackknife estimator of species richness, 85 species (${\pm}18.16$), 70 species (${\pm}5.88$) and 186 species (${\pm}17.10$) belonging to 31 families were found in the Oktwin teak bearing forest, 33 families in Letpanpin community forest and 53 families in Alaungdaw Kathapa national park, respectively. Shannon's diversity indices were significantly different among the forests (p<0.05). It ranged from 3.36 to 4.36. Mean tree density (n/ha) of the Oktwin teak bearing forest, Letpanpin community forest and Alaungdaw Kathapa National Park were 488 (${\pm}18.6$), 535 (${\pm}15.6$) and 412 (${\pm}14.1$), while basal areas per hectare were $46.96m^2({\pm}3.23),\;49.01m^2({\pm}5.08)\;and\;60.03m^2({\pm}3.88)$, respectively. At the family level, Verbenaceae, Myrtaceae and Combretaceae occupied the highest importance value index, while at the species level it was Tectona grandis, Lagerstoremia speciosa and Xylia xylocarpa.

Estimating the Competition Indices and Diameter Growth of Individual Trees through Position-dependent Stand Survey (위치종속임분조사(位置從屬林分調査)에 의한 개체목(個體木)의 경쟁지수(競爭指數) 및 흉고직경생장(胸高直徑生長) 추정(推定))

  • Lee, Woo-Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.3
    • /
    • pp.539-551
    • /
    • 1996
  • In this study, a number of distance-dependent competition indices on tree-level which incorporate the tree sizes and distances to competitors, and traditional stand-level density measures were estimated from the data compiled with position-dependent survey in a Pinus densiflora stand. The performance of the estimated competition indices was examined by comparing the relationship with the diameter growth, and a dbh growth function, in which the competition index is considered as a one of influence factors, are developed. In the searching method of competing trees, the competition index estimated with $30^{\circ}$ competition interrupting angle showed the highest correlation with the annual dbh growth, while the expanding the competing zone distance had no significant effect on the performance of competition index in estimating annual dbh growth. The most of the examined stand-level competition indices, based on distance-dependent single-tree competition indices, were evaluated to describe similarly the stand competition status. As a result of partial correlation analysis in which the effect of age and site index are eliminated, Alemdag's mean competition index and relative spacing index were determined to have the highest correlation with dbh. The relative spacing index, which can be easily measured in field without measuring the position of individual trees, was considered to be a better suited one for estimating mean dbh of a stand. Among distance-dependent competition indices on tree-level, Hegyi's competition index showed the best performance in their correlation with annual dbh growth, if eliminated the effect of site index and dbh. This enabled to derive the following annual dbh growth function of individual trees which incorporate age, dominant height, dbh and Hegyi's competition index as influence factors : $$dbh^{\prime}=3.975362676{\cdot}age^{-1.099274613}{\cdot}ho^{0.199893990}{\cdot}dbh^{0.269430865}{\cdot}HgCI^{-0.353643587}$$ This function is coincided to the growth principle in which site index has a positive effect on the annual dbh growth, while high age or competition causes to reduce the annual dbh growth, and can be used as a function in single tree growth model.

  • PDF