• 제목/요약/키워드: stacked thin film

검색결과 77건 처리시간 0.023초

Mg0.1Zn0.9O/ZnO 활성층 구조의 박막트랜지스터 연구 (A Study of Thin-Film Transistor with Mg0.1Zn0.9O/ZnO Active Structure)

  • 이종훈;김홍승;장낙원;윤영
    • 한국전기전자재료학회논문지
    • /
    • 제27권7호
    • /
    • pp.472-476
    • /
    • 2014
  • We report the characteristics of thin-film transistor (TFT) to make the bi-channel structure with stacked $Mg_{0.1}Zn_{0.9}O$ (Mg= 10 at.%) and ZnO. The ZnO and $Mg_{0.1}ZnO_{0.9}O$ thin films were deposited by radio frequency (RF) co-sputter system onto the thermally oxidized silicon substrate. A total thickness of active layer was 50 nm. Firstly, the ZnO thin films were deposited to control the thickness from 5 nm to 30 nm. Sequentially, the $Mg_{0.1}ZnO_{0.9}O$ thin films were deposited to change from 45 nm to 20 nm. The bi-layer TFT shows more improved properties than the single layer TFT. The field effect mobility and subthreshold slope for $Mg_{0.1}ZnO_{0.9}O$/ZnO-TFT are $7.40cm^2V^{-1}s^{-1}$ and 0.24 V/decade at the ZnO thickness of 10 nm, respectively.

Ferroelectric and Structural Properties of Nd-substituted $Bi_4Ti_3O_{12}$ Thin Films Fabricated by MOCVD

  • Kang, Dong-Kyun;Park, Won-Tae;Kim, Byong-Ho
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2006년도 추계학술대회 발표 논문집
    • /
    • pp.166-169
    • /
    • 2006
  • A promising capacitor, which has conformable step coverage and good uniformity of thickness and composition, is needed to manufacture high-density non-volatile FeRAM capacitors with a stacked cell structure. In this study, ferroelectric $Bi_{3.61}Nd_{0.39}Ti_3O_{12}$ (BNT) thin films were prepared on $Pt(111)/Ti/SiO_2/Si$ substrates by the liquid delivery system MOCVD method. In these experiments, $Bi(ph)_3$, $Nd(TMHD)_3$ and $Ti(O^iPr)_2(TMHD)_2$ were used as the precursors and were dissolved in n-butyl acetate. The BNT thin films were deposited at a substrate temperature and reactor pressure of approximately $600^{\circ}C$ and 4.8 Torr, respectively. The microstructure of the layered perovskite phase was observed by XRD and SEM. The remanent polarization value (2Pr) of the BNT thin film was $31.67\;{\mu}C/cm^2$ at an applied voltage of 5 V.

  • PDF

$TaN_x$/Cr Cermet 적층 박막의 비저항 및 저항온도계수에 관한 연구 (A Study on the Reistivity and Temperature Coefficient of Resistivity of Stacked $TaN_x$/Cr Cermet Thin Film)

  • 허명수;천희곤;인건환;권식철;조동율
    • 한국진공학회지
    • /
    • 제3권2호
    • /
    • pp.190-197
    • /
    • 1994
  • 본 연구에서는 DC magnetron 스퍼터링법을 이용하여 고정밀, 고저항 저항체 박막으로 TaNx film을 제조하였을 때 형성될 수 있는 화합물 중 TaN0.1, TaN0.8과 TaN 박막의 Rs와 TCR특성을 평가하 고 film층의 우선방향성을 XRD를 이용하여 판명한 뒤 저항체의 Rs와 TCR에 미치는 영향을 조사하였 다. TaN0.1 박막이 35$\Omega$/$\square$의 면저항값과 안정된 TCR값을 나타내는 것을 알수 있었다. 두께50~200nm 의 TaN0.1과 Alumina 기판 사이에 정(+)의 TCR을 갖는 약 50nm의 Cr층을 증착하였을 때 Rs는 180$\Omega$/ $\square$ 과 TCR는 20ppm/$^{\circ}C$인 적층박막을 제조할 수 있었다. TaN0.1, TaN0.8 과 TaN 시편에서 화합물 형성 에 따른 Ta의 결합에너지를 ESCA를 이용하여 조사하였다. 이상의 연구결과로부터 TaN0.1 film이 TaNfilm 보다 고정밀, 고저항 박막 저항체 제조에 있어 우수한 전기저항 특성을 가지며 Cr 중간층 형성 으로 TCR이 $\pm$ppm/$^{\circ}C$정도로 안정된 고정밀 다층 저항체 박막을 형성할 수 있었다.

  • PDF

MOCVD RuOx 박막의 미세구조 특성평가와 열처리 가스환경 영향 (Microstructural Characterization of MOCVD RuOx Thin Films and Effects of Annealing Gas Ambient)

  • 김경원;김남수;최일상;김호정;박주철
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권9호
    • /
    • pp.423-429
    • /
    • 2002
  • RuOx thin films were fabricated by the method of liquid delivery MOCVD using Ru(C$_{8}$ $H_{13}$ $O_2$)$_3$ as the precursor and their thermal effects and conductivity were investigated. Ru films deposited at 25$0^{\circ}C$ were annealed at $650^{\circ}C$ for 1min with Ar, $N_2$ or N $H_3$ ambient. The changes of the micro-structure, the surface morphology and the electrical resistivity of the Ru films after annealing were studied. Ar gas was more effective than $N_2$ and N $H_3$ gases as an ambient gas for the post annealing of the Ru films, because of smaller resistivity and denser grains. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that the Ru $O_2$ phase and the silicidation are not observed regardless of the ambient gases. The minimum resistivity of the Ru film is found to have the value of 26.35 $\mu$Ω-cm in Ar ambient. Voids were formed at Ru/TiN interface of the Ru layer after annea1ing in $N_2$ ambient. The $N_2$ gas generated due to the oxidation of the TiN layer accumulated at the Ru/TiN interface, forming bubbles; consequently, the stacked film may peel off the Ru/TiN interface.e.

D.C. magnetron sputtering에 의해 indium/copper 층이 selenizing된 $CuInSe_2$막의 특성 (Properties of CulnSe$_{2}$ thin films selenizing indium/copper layers prepared by D.C. magnetron sputtering)

  • 한상규;김선재;이형복;이병하;박성
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권3호
    • /
    • pp.298-305
    • /
    • 1995
  • Copper-indium diselenide, $CuInSe_2$, thin films have been fabricated by selenizing Cu/In stacked layers with different sputtered Cu/(Cu+ln) mole ratios at 450.deg. C for 1hr on alumina substrates. The selenium source was selenium vapor. Microstructure, crystallization, and composition of the selenized $CuInSe_2$ films were examined by using scanning electron microscope, X-ray diffraction, Auger electron spectroscopy, and secondary ion mass spectrometry. Electrical resistivity and hall effects were also measured to investigate the electrical properties. As the sputtered Cu/(Cu+In) mole ratio of In/Cu layer increased, the amounts of void and CuSe phase in the selenized films increased but the composition of $CuInSe_2$ phase was the same regardless of the sputtered mole ratio. Comparing the electrical properties of $CuInSe_2$ thin film before and after the chemical etching, it was seen that the electrical resistivity, carrier concentration, and carrier mobility of the selenized films were affected by the amount of CuSe phase which seemed to increase primarily the hole concentration of the selenized films.

  • PDF

Growth and characterization of $Cu_2ZnSnSe_4$ (CZTSe) thin films by sputtering of binary selenides and selenization

  • Munir, Rahim;Jung, Gwang-Sun;Ahn, Byung-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • Thin film solar cells are growing up in the market due to their high efficiency and low cost. Especially CdTe and $CuInGaSe_2$ based solar cells are leading the other cells, but due to the limited percentage of the elements present in our earth's crust like Tellurium, Indium and Gallium, the price of the solar cells will increase rapidly. Copper Zinc Tin Sulfide (CZTS) and Copper Zinc Tin Selenide (CZTSe) semiconductor (having a kesterite crystal structure) are getting attention for its solar cell application as the absorber layer. CZTS and CZTSe have almost the same crystal structure with more environmentally friendly elements. Various authors have reported growth and characterization of CZTSe films and solar cells with efficiencies about 3.2% to 8.9%. In this study, a novel method to prepare CZTSe has been proposed based on selenization of stacked Copper Selenide ($Cu_2Se$), Tin Selenide ($SnSe_2$) and Zinc Selenide (Zinc Selenide) in six possible stacking combinations. Depositions were carried out through RF magnetron sputtering. Selenization of all the samples was performed in Close Space Sublimation (CSS) in vacuum at different temperatures for three minutes. Characterization of each sample has been performed in Field Emission SEM, XRD, Raman spectroscopy, EDS and Auger. In this study, the properties and results of $Cu_2ZnSnSe_4$ thin films grown by selenization will be presented.

  • PDF

Effects of Heterostructure Electrodes on the Reliability of Ferroelectric PZT Thin Films

  • Kim, Seung-Hyun;Woo, Hyun-Jung;Koo, Chang-Young;Yang, Jeong-Seung;Ha, Su-Min;Park, Dong-Yeon;Lee, Dong-Su;Ha, Jo-Woong
    • 한국세라믹학회지
    • /
    • 제39권4호
    • /
    • pp.341-345
    • /
    • 2002
  • The effect of the Pt electrode and the $Pt-IrO_2$ hybrid electrode on the performance of ferroelectric device was investigated. The modified Pt thin films with non-columnar structure significantly reduced the oxidation of TiN diffusion barrier layer, which rendered it possible to incorporate the simple stacked structure of Pt/TiN/poly-Si plug. When a $Pt-IrO_2$ hybrid electrode is applied, PZT thin film properties are influenced by the thickness and the partial coverage of the electrode layers. The optimized $Pt-IrO_2$ hybrid electrode significantly enhanced the fatigue properties with minimal leakage current.

2차원 기공층을 포함하는 초박형 단열기판의 미세구조 및 단열 특성 (Microstructure and Thermal Insulation Properties of Ultra-Thin Thermal Insulating Substrate Containing 2-D Porous Layer)

  • 유창민;이창현;신효순;여동훈;김성훈
    • 한국전기전자재료학회논문지
    • /
    • 제30권11호
    • /
    • pp.683-687
    • /
    • 2017
  • We investigated the structure of an ultra-thin insulating board with low thermal conductivity along z-axis, which was based on the idea of void layers created during the glass infiltration process for the zero-shrinkage low-temperature co-fired ceramic (LTCC) technology. An alumina and four glass powders were chosen and prepared as green sheets by the tape casting method. After comparison of the four glass powders, bismuth glass was selected for the experiment. Since there is no notable reactivity between alumina and bismuth glass, alumina was selected as the supporting additive in glass layers. With 2.5 vol% of alumina powder, glass green sheets were prepared and stacked alternately with alumina green sheet to form the 'alumina/glass (including alumina additive)/alumina' structure. The stacked green sheets were sintered into an insulating substrate. Scanning electron microscopy revealed that the additive alumina formed supporting bridges in void layers. The depth and number of the stacking layers were varied to examine the insulating property. The lowest thermal conductivity obtained was 0.23 W/mK with a $500-{\mu}m-thick$ substrate.

PVDF 압전소자를 이용한 심장박동 및 호흡수 동시측정센서개발 (Development of New Stacked Element Piezoelectric Polyvinylidene Fluoride Pressure Sensor for Simultaneous Heartbeat and Respiration Measurements)

  • 박창용;권현규;이소진;롱원만
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.100-108
    • /
    • 2019
  • In this paper, a new stacked element pressure sensor has proposed for heartbeat and respiration measurement. This device can be directly attached to an individual's chest; heartbeat and respiration are detected by the pulsatile vibration and deformation of the chest. A key feature of the device is the simultaneous measurement of heart rate and respiration. The structure of the sensor consists of two stacked elements, in which one element includes one polyvinylidene fluoride (PVDF) thin film bonded on polydimethylsiloxane (PDMS) substrate. In addition, for the measurement and signal processing, the electric circuit and the filter are simply constructed with an OP-amp, resistance, and a capacitor. One element (element1, PDMS) maximizes the respiration signal; the other (element2, PVDF) is used to measure heartbeat. Element1 and element2 had sensitivity of 0.163V/N and 0.209V/N, respectively, and element2 showed improved characteristics compared with element1 in response to force. Thus, element1 and element2 were optimized for measuring respiration heart rate, respectively. Through mechanical and vivo human tests, this sensor shows the great potential to optimize the signals of heartbeat and respiration compared with commercial devices. Moreover, the proposed sensor is flexible, light weight, and low cost. All of these characteristics illustrate an effective piezoelectric pressure sensor for heartbeat and respiration measurements.

전력반도체 응용을 위한 용액 공정 인듐-갈륨 산화물 반도체 박막 트랜지스터의 성능과 안정성 향상 연구 (Solution-Processed Indium-Gallium Oxide Thin-Film Transistors for Power Electronic Applications)

  • 김세현;이정민;;김민규;정유진;백강준
    • 한국전기전자재료학회논문지
    • /
    • 제37권4호
    • /
    • pp.400-406
    • /
    • 2024
  • Next-generation wide-bandgap semiconductors such as SiC, GaN, and Ga2O3 are being considered as potential replacements for current silicon-based power devices due to their high mobility, larger size, and production of high-quality wafers at a moderate cost. In this study, we investigate the gradual modulation of chemical composition in multi-stacked metal oxide semiconductor thin films to enhance the performance and bias stability of thin-film transistors (TFTs). It demonstrates that adjusting the Ga ratio in the indium gallium oxide (IGO) semiconductor allows for precise control over the threshold voltage and enhances device stability. Moreover, employing multiple deposition techniques addresses the inherent limitations of solution-processed amorphous oxide semiconductor TFTs by mitigating porosity induced by solvent evaporation. It is anticipated that solution-processed indium gallium oxide (IGO) semiconductors, with a Ga ratio exceeding 50%, can be utilized in the production of oxide semiconductors with wide band gaps. These materials hold promise for power electronic applications necessitating high voltage and current capabilities.