• 제목/요약/키워드: stable f-harmonic maps

검색결과 3건 처리시간 0.016초

SOME RESULTS ON STABLE f-HARMONIC MAPS

  • Embarka, Remli;Cherif, Ahmed Mohammed
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.935-942
    • /
    • 2018
  • In this paper, we prove that any stable f-harmonic map from sphere ${\mathbb{S}}^n$ to Riemannian manifold (N, h) is constant, where f is a smooth positive function on ${\mathbb{S}}^n{\times}N$ satisfying one condition with n > 2. We also prove that any stable f-harmonic map ${\varphi}$ from a compact Riemannian manifold (M, g) to ${\mathbb{S}}^n$ (n > 2) is constant where, in this case, f is a smooth positive function on $M{\times}{\mathbb{S}}^n$ satisfying ${\Delta}^{{\mathbb{S}}^n}(f){\circ}{\varphi}{\leq}0$.

STABLE f-HARMONIC MAPS ON SPHERE

  • CHERIF, AHMED MOHAMMED;DJAA, MUSTAPHA;ZEGGA, KADDOUR
    • 대한수학회논문집
    • /
    • 제30권4호
    • /
    • pp.471-479
    • /
    • 2015
  • In this paper, we prove that any stable f-harmonic map ${\psi}$ from ${\mathbb{S}}^2$ to N is a holomorphic or anti-holomorphic map, where N is a $K{\ddot{a}}hlerian$ manifold with non-positive holomorphic bisectional curvature and f is a smooth positive function on the sphere ${\mathbb{S}}^2$with Hess $f{\leq}0$. We also prove that any stable f-harmonic map ${\psi}$ from sphere ${\mathbb{S}}^n$ (n > 2) to Riemannian manifold N is constant.

A NONEXISTENCE THEOREM FOR STABLE EXPONENTIALLY HARMONIC MAPS

  • Koh, Sung-Eun
    • 대한수학회보
    • /
    • 제32권2호
    • /
    • pp.211-214
    • /
    • 1995
  • Let M and N be compact Riemannian manifolds and $f : M \to N$ be a smooth map. Following J. Eells, f is exponentially harmonic if it represents a critical point of the exponential energy integral $$ E(f) = \int_{M} exp(\left\$\mid$ df \right\$\mid$^2) dM $$ where $(\left\ df $\mid$\right\$\mid$^2$ is the energy density defined as $\sum_{i=1}^{m} \left\$\mid$ df(e_i) \right\$\mid$^2$, m = dimM, for orthonormal frame $e_i$ of M. The Euler- Lagrange equation of the exponential energy functional E can be written $$ exp(\left\$\mid$ df \right\$\mid$^2)(\tau(f) + df(\nabla\left\$\mid$ df \right\$\mid$^2)) = 0 $$ where $\tau(f)$ is the tension field along f. Hence, if the energy density is constant, every harmonic map is exponentially harmonic and vice versa.

  • PDF