• Title/Summary/Keyword: stable cathode

Search Result 166, Processing Time 0.023 seconds

Investigation of the Effect of Acidity and Polyethylene Glycol on Electrochemical Deposition of Trivalent Chromium Ions

  • Phuong, N.V.;Kwon, S.C.;Lee, J.Y.;Kim, M.;Lee, Y.I.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.47-48
    • /
    • 2011
  • The effect of solution acidity and organic additives, polyethylene glycol (PEG), on the trivalent chromium electroplating was systematically investigated in the view point of solution stability, electroreduction of trivalent chromium ions and characterization of deposition layer. It was found that, the concentration of fraction chromium complexes in the trivalent chromium bath containing formic acid is strongly depended on pH value. PEG molecules were stable in trivalent chromium bath containing formic acid via studies on electrospray ionization mass spectrometry (ESI-MS) and UV-Vis. However, the presence of PEG molecules decreased the reductive current of hydrogen evolution, increasing of current efficiency higher about 10 % compared with solutions without PEG. Moreover, PEG additives developed the nodular morphology during electroreduction of trivalent chromium ions with the increase of solution acidity and enhanced its current efficiency by maintaining the consumption of complexant, formic acid, at a low speed. In this study, the effect of solution acidity was emphasized important, there, it controlled the formation of complexes in the solution, cathodic film (CF) during deposition, and properties of deposited layer. By electrochemical quartz crystal microbalance (EQCM), studies show that chromium electrodeposition occurs via the formation of intermediate complexes and adsorption on the cathode surface, which hinder the penetration of ions from bulk solution to the cathode surface.

  • PDF

Corrosion Properties of Dissimilar Friction Stir Welded 6061 Aluminum and HT590 Steel

  • Seo, Bosung;Song, Kuk Hyun;Park, Kwangsuk
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1232-1240
    • /
    • 2018
  • Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel were investigated to understand effects of galvanic corrosion. As cathode when coupled, HT590 was cathodically protected. However, the passivation of AA6061 made the aluminum alloy cathode temporarily, which leaded to corrosion of HT590. From the EIS analysis showing Warburg diffusion plot in Nyquist plots, it can be inferred that the stable passivation layer was formed on AA6061. However, the weld as well as HT590 did not show Warburg diffusion plot in Nyquist plots, suggesting that there was no barrier for corrosion or even if it exists, the barrier had no function for preventing and/or retarding charge transport through the passivation layer. The open circuit potential measurements showed that the potential of the weld was similar to that of HT590, which lied in the pitting region for AA6061, making the aluminum alloy part of the weld keep corrosion state. That resulted in the cracked oxide film on AA6061 of the weld, which could not play a role of corrosion barrier.

Development and characteristics investigation of new soft plasma ionization(SPI) source (새로운 소프트 플라스마 이온화(SPI) 장치의 개발 및 특성관찰)

  • Lee, Hiwwon;Park, Hyunkook;Lee, Sang Chun
    • Analytical Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.152-158
    • /
    • 2009
  • In this study, we made a new discharge source improving previous SPI source to ionize softly organic compounds. The new SPI source consists of two electrodes as a hollow mesh cathode of half cylindrical shape and a hollow anode. We optimized the geometrical parameter of the SPI source by investigating the I-V curves at the various distance between the cathode and the anode. As the results, we found stable conditions of the soft plasma on broad range of the current and the voltage. The new SPI source attached to quadrupole mass spectrometer (QMS), and we obtained the mass spectra of dichloromethane (DCM). The fragment patterns of DCM appeared similarly with the pattern of electron ionization (EI).

Enrichment of $CO_2$-Fixing Bacteria in Cylinder-Type Electrochemical Bioreactor with Built-In Anode Compartment

  • Jeon, Bo-Young;Jung, Il-Lae;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.590-598
    • /
    • 2011
  • Bacterial assimilation of $CO_2$ into stable biomolecules using electrochemical reducing power may be an effective method to reduce atmospheric $CO_2$ without fossil fuel combustion. For the enrichment of the $CO_2$-fixing bacteria using electrochemical reducing power as an energy source, a cylinder-type electrochemical bioreactor with a built-in anode compartment was developed. A graphite felt cathode modified with neutral red (NR-graphite cathode) was used as a solid electron mediator to induce bacterial cells to fix $CO_2$ using electrochemical reducing power. Bacterial $CO_2$ consumption was calculated based on the variation in the ratio of $CO_2$ to $N_2$ in the gas reservoir. $CO_2$ consumed by the bacteria grown in the electrochemical bioreactor (2,000 ml) reached a maximum of approximately 1,500 ml per week. Time-coursed variations in the bacterial community grown with the electrochemical reducing power and $CO_2$ in the mineral-based medium were analyzed via temperature gradient gel electrophoresis (TGGE) of the 16S rDNA variable region. Some of the bacterial community constituents noted at the initial time disappeared completely, but some of them observed as DNA signs at the initial time were clearly enriched in the electrochemical bioreactor during 24 weeks of incubation. Finally, Alcaligenes sp. and Achromobacter sp., which are capable of autotrophically fixing $CO_2$, were enriched to major constituents of the bacterial community in the electrochemical bioreactor.

The relation of the crystal phase and the charge/discharge capacity of $Li[Li_yMn_{2-y}]O_4$ cathode materials substituted Li (Li 치환된 $Li[Li_yMn_{2-y}]O_4$ 정극 활물질의 결정 구조와 충방전 용량과의 관계)

  • Jeong, In-Seong;Gu, Hal-Bon;Park, Bok-Gi;Son, Myeng-Mo;Lee, Heon-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.117-120
    • /
    • 2000
  • The relation of crystal phase and charge/discharge capacity of $Li[Li_yMn_{2-y}]O_4$ were studied for different degrees of Li substitution (y). All cathode material showed spinel phase based on cubic phase in X-ray diffraction. Other peaks didn't show in spite of the increase of y value in $Li[Li_yMn_{2-y}]O_4$. Ununiform of $Li[Li_yMn_{2-y}]O_4$ which calcinated by (111) face and (222) face was more stable than that of pure $LiMn_2O_4$. In addition, At TG analysis, calcined $Li[Li_{0.1}Mn_{1.9}]O_4$ exhibited much mass loss at $800{\mu}m$. The cycle performance of the $Li(Li_yMn_{2-y}]O_4$ was improved by the substitution of $Li^{1+}$ for $Mn^{3+}$ in the octahedral sites. Specially, $Li[Li_{0.08}Mn_{1.92}]O_4$ and $Li[Li_{0.1}Mn_{1.9}]O_4$ cathode materials showed the charge and discharge capacity of about 125mAh/g at first cycle, and about 95mAh/g after 70th cycle. It is excellent than that of pure $LiMn_2O_4$, which 125mAh/g at first cycle, 65mAh/g at 70th.

  • PDF

Proposed Guidelines for Selection of Methods for Erosion-corrosion testing in Flowing Liquids

  • Matsumura, Masanobu
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.291-296
    • /
    • 2007
  • The corrosion of metals and alloys in flowing liquids can be classified into uniform corrosion and localized corrosion which may be categorized as follows. (1) Localized corrosion of the erosion-corrosion type: the protective oxide layer is assumed to be removed from the metal surface by shear stress or turbulence of the fluid flow. A macro-cell may be defined as a situation in which the bare surface is the macro-anode and the other surface covered with the oxide layer is the macro-cathode. (2) Localized corrosion of the differential flow-velocity corrosion type: at a location of lower fluid velocity, a thin and coarse oxide layer with poor protective qualities may be produced because of an insufficient supply of oxygen. A macro-cell may be defined as a situation in which this surface is the macro-anode and the other surface covered with a dense and stable oxide layer is the macro-cathode. (3) Localized corrosion of the active/passive-cell type: on a metal surface a macro-cell may be defined as a situation in which a part of it is in a passivation state and another in an active dissolution state. This situation may arise from differences in temperature as well as in the supply of the dissolved oxygen. Compared to uniform corrosion, localized corrosion tends to involve a higher wall thinning rate (corrosion rate) due to the macro-cell current as well as to the ratio of the surface area of the macro-anode to that of the macro-cathode, which may be rationalized using potential vs. current density diagrams. The three types of localized corrosion described above can be reproduced in a Jet-in-slit test by changing the flow direction of the test liquid and arranging environmental conditions in an appropriate manner.

Materials Chemical Point of View for Durability Issues in Solid Oxide Fuel Cells

  • Yokokawa, Harumi;Horita, Teruhisa;Yamaji, Katsuhiko;Kishimoto, Haruo;Brito, M.E.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.26-38
    • /
    • 2010
  • Degradation in Solid Oxide Fuel Cell performance can be ascribed to the following fundamental processes from the materials chemical point of view; that is, diffusion in solids and reaction with gaseous impurities. For SOFC materials, diffusion in solids is usually slow in operation temperatures $800\sim1000^{\circ}C$. Even at $800^{\circ}C$, however, a few processes are rapid enough to lead to some degradations; namely, Sr diffusion in doped ceria, cation diffusion in cathode materials, diffusion related with metal corrosion, and sintering of nickel anodes. For gaseous impurities, chromium containing vapors are important to know how the chemical stability of cathode materials is related with degradation of performance. For LSM as the most stable cathode among the perovskite-type cathodes, electrochemical reduction reaction of $CrO_3$(g) at the electrochemically active sites is crucial, whereas the rest of the cathodes have the $SrCrO_4$ formation at the point where cathodes meet with the gases, leading to rather complicated processes to the degradations, depending on the amount and distribution of reacted Cr component. These features can be easily generalized to other impurities in air or to the reaction of nickel anodes with gaseous impurities in anode atmosphere.

Recent Development of 5 V Cathode Materials for Lithium Rechargeable Batteries

  • Kim Hyun-Soo;Periasamy Padikkasu;Moon Seong-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • This paper deals with the recent development of high-voltage cathode materials of mono- and di- metal ions substituted spinel $LiMn_2O_4$ for lithium batteries. $LiCu_xMn_{2-x}O_4(0{\leq}x{\leq}0.5)$ shows reversible intercalation/deintercalation in two potential regions, $3.9\~43\;and\;4.8-5.0V$ and stable electrochemical cycling behavior but with low capacity. $LiNi_{0.5}Mn_{1.5}O_4$ obtained by a sol-gel process delivers a capacity of 127mAh $g^{-1}$ on the first cycle and sustains a value of 124 mAh $g^{-1}$ even after the 60th cycle. The $Li_xCr_yMn_{2-y}O_4(0{\leq}x{\leq}0.5)$ solid-solutions exhibit enhanced specific capacity, larger average voltage, and improved cycling behaviors for low Cr content. $LiCr_yMn_{2-y}O_4$ presents a reversible Li deintercalation process at 4.9V, whose capacity is proportional to the Cr content in the range of $0.25{\leq}x{\leq}0.5$ and delivers higher capacities. $LiM_yCr_{0.5-y}Mn_{1.5}O_4(M=Fe\;or\;Al)$ shows that the capacity retention is lowered compared with lithium manganate. The cumulative capacities obtainable with Al-substitutted materials are less than those with Fe-substituted materials. $LiCr_xNi_{0.5-x}Mn_{1.5}O_4(x=0.1)$ delivers a high initial capacity of 1$152mAh\;g^{-1}$ with excellent cycleability.

Combined Effect of Catholyte Gap and Cell Voltage on Syngas Ratio in Continuous CO2/H2O Co-electrolysis

  • Ha, Min Gwan;Na, Youngseung;Park, Hee Young;Kim, Hyoung-Juhn;Song, Juhun;Yoo, Sung Jong;Kim, Yong-Tae;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.406-414
    • /
    • 2021
  • Electrochemical devices are constructed for continuous syngas (CO + H2) production with controlled selectivity between CO2 and proton reduction reactions. The ratio of CO to H2, or the faradaic efficiency toward CO generation, was mechanically manipulated by adjusting the space volume between the cathode and the polymer gas separator in the device. In particular, the area added between the cathode and the ion-conducting polymer using 0.5 M KHCO3 catholyte regulated the solution acidity and proton reduction kinetics in the flow cell. The faradaic efficiency of CO production was controlled as a function of the distance between the polymer separator and cathode in addition to that manipulated by the electrode potential. Further, the electrochemical CO2 reduction device using Au NPs presented a stable operation for more than 23 h at different H2:CO production levels, demonstrating the functional stability of the flow cell utilizing the mechanical variable as an important operational factor.

First-Principles Investigation of the Surface Properties of LiNiO2 as Cathode Material for Lithium-ion Batteries (제일원리계산을 이용한 리튬이차전지 양극활물질 LiNiO2의 표면 특성에 관한 연구)

  • Choi, Heesung;Lee, Maeng-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.169-176
    • /
    • 2013
  • Solid state lithium oxide compounds of layered structure, which has high stability of structure, are mainly used as the cathode materials in lithium-ion batteries (LIBs). Recently, the investigation of Solid Electrolyte Interphase (SEI) between active materials and electrolyte has been focusing to improve the performance of lithium-ion batteries. For the investigation of the SEI, the study of surface properties of cathode materials and anode materials is also required in advance. $LiNiO_2$ and $LiCoO_2$ are very similar layered structure of cathode active materials and representative solid state lithium oxide compounds in LIBs. Various experimental and theoretical studies have been doing for $LiCoO_2$. The theoretical investigation of $LiNiO_2$ is not sufficient, however, even if experimental studies of $LiNiO_2$ are enough. In this study, the surface energies of nine facets of $LiNiO_2$ crystal facets were calculated by Density Functional Theory. In XRD data of $LiNiO_2$, (003), (104), (101), et al. facets are main surfaces in order. However, the results of calculation are different with XRD data. Thus, both (104) and (101) facets, which are energetically stable and measured in XRD, are mainly exposed in the surface of $LiNiO_2$ and it is expected that intercalation and de-intercalation of Li-ion will be affected by them.