DOI QR코드

DOI QR Code

First-Principles Investigation of the Surface Properties of LiNiO2 as Cathode Material for Lithium-ion Batteries

제일원리계산을 이용한 리튬이차전지 양극활물질 LiNiO2의 표면 특성에 관한 연구

  • Received : 2013.07.23
  • Accepted : 2013.08.19
  • Published : 2013.08.31

Abstract

Solid state lithium oxide compounds of layered structure, which has high stability of structure, are mainly used as the cathode materials in lithium-ion batteries (LIBs). Recently, the investigation of Solid Electrolyte Interphase (SEI) between active materials and electrolyte has been focusing to improve the performance of lithium-ion batteries. For the investigation of the SEI, the study of surface properties of cathode materials and anode materials is also required in advance. $LiNiO_2$ and $LiCoO_2$ are very similar layered structure of cathode active materials and representative solid state lithium oxide compounds in LIBs. Various experimental and theoretical studies have been doing for $LiCoO_2$. The theoretical investigation of $LiNiO_2$ is not sufficient, however, even if experimental studies of $LiNiO_2$ are enough. In this study, the surface energies of nine facets of $LiNiO_2$ crystal facets were calculated by Density Functional Theory. In XRD data of $LiNiO_2$, (003), (104), (101), et al. facets are main surfaces in order. However, the results of calculation are different with XRD data. Thus, both (104) and (101) facets, which are energetically stable and measured in XRD, are mainly exposed in the surface of $LiNiO_2$ and it is expected that intercalation and de-intercalation of Li-ion will be affected by them.

현재 이차전지에서 사용중인 양극활물질은 구조 안정성이 높은 층상구조(Layered Structure)의 리튬 금속 산화물(Solid State Lithium Oxide Compounds)이 주로 사용된다. 최근에는 리튬이차전지의 성능향상을 위해서 음극활물질과 전해질 사이의 계면뿐만 아니라, 양극활물질과 전해질 사이의 계면에 관한 연구가 활발히 진행되고 있으며, 이러한 계면의 연구를 위해서는 음극활물질 뿐만 아니라, 양극활물질의 표면에 관한 연구도 선행적으로 이루어져야 하는 상황이다. 대표적인 리튬금속 산화물질인 니켈산리튬($LiNiO_2$)과 코발트산리튬($LiCoO_2$)은 서로 매우 유사한 구조를 갖는 층상구조의 양극활물질이다. 코발트산리튬이 다양한 실험적, 이론적 연구가 진행된 반면에, 니켈산 리튬은 실험적 연구에 비해서 이론적 연구가 부족하다. 따라서, 본 연구에서는 니켈산리튬의 X-선 회절계 측정 결과(XRD data)에 나오는9개의 표면 방향을 범밀도함수이론(Density Functional Theory)을 이용하여 니켈산리튬 표면의 표면 에너지를 계산하였다. 니켈산리튬의 X-선 회절계 측정 결과(XRD data)에서는 (003), (104), (101), (110) 결정 등등이 순차적으로 주요하게 존재하는 것으로 확인되었다. 그러나 시뮬레이션을 이용한 각각의 표면 에너지 계산 결과, X-선 회절계 측정 결과와 다른 순서로 안정한 표면 에너지가 나타나는 결과를 얻었다. 따라서 에너지적으로 안정한 표면이자, X-선 회절계에서 주요하게 나타나는 (104)와 (101) 방향의 니켈산리튬 표면이 많이 노출되어 Li 이온의 충방전시 리튬의 삽입 탈리에 영향을 줄 것으로 예상된다.

Keywords

References

  1. B. Scrosati, 'Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells', Chem. Rec. 5, 286 (2005). https://doi.org/10.1002/tcr.20054
  2. A. Gotcher, 'Nanostructured Electrodes', Adv. Mater. Process. 163, 32 (2005).
  3. 박정기 외 14인, 리튬이차전지의 원리 및 응용, 우명찬, p28-p83, 홍릉과학출판사, 서울시 강북구 인수동 455-60 (2010).
  4. Anthony W. Moses, Harry G. Garcia Flores, Jong-Gyu Kim and Marjorie A. Langell, 'Surface properties of $LiCoO_{2}$, $LiNiO_{2}$ and $LiNi_{1-x}CoxO_{2}$', Appl. Surf. Sci. 253, 4782 (2006).
  5. I. Nakai et al., 'X-ray absorption fine structure and neutron diffraction analyses of de-intercalation behavior in the $LiCoO_{2}$ and $LiNiO_{2}$ systems', J. Power. Sources. 68, 536 (1997). https://doi.org/10.1016/S0378-7753(97)02598-6
  6. P. Kalyani and N. Kalaiselvi, 'Various aspects of $LiNiO_{2}$: A review', Sci. Tech. Adv. Mat. 6, 689 (2005). https://doi.org/10.1016/j.stam.2005.06.001
  7. Y. S. Lee, Y. K. Sun and K. S. Nahm, 'Synthesis and characterization of $LiNiO_{2}$ cathode material prepared by an adiphic acid-assisted sol-gel method for lithium secondary batteries', Solid State Ionics 118, 159 (1999). https://doi.org/10.1016/S0167-2738(98)00438-X
  8. Tsutomu Ohzuku, Atsushi Ueda and Masatoshi Nagayama, 'Electrochemistry and structural chemistry of $LiNiO_{2}$ (R3m) for 4 Volt Secondary Lithium Cells', J. Electrochem. Soc. 140, 1862 (1993). https://doi.org/10.1149/1.2220730
  9. W. Ebner, D. Fouchard and L. Xie, 'The $LiNiO_{2}$ / carbon lithium-ion battery', Solid State Ionics 69, 238 (1994). https://doi.org/10.1016/0167-2738(94)90413-8
  10. G. X. Wang et al., 'Synthesis and characterization of $LiNiO_{2}$ compounds as cathodes for rechargeable lithium batteries', J. Power. Sources 76, 141 (1998). https://doi.org/10.1016/S0378-7753(98)00153-0
  11. C. Delmas et al., 'On the behavior of the $Li_{x}NiO_{2}$ systems: an electrochemical and structural overview', J. Power Sources 68, 120 (1997). https://doi.org/10.1016/S0378-7753(97)02664-5
  12. Liyun Hu et al., 'Ab initio studies on the stability and electronic structure of $LiCoO_{2}$ (003) surfaces', Phys. Rev. B 71, 125433 (2005). https://doi.org/10.1103/PhysRevB.71.125433
  13. Yongsen Kim, Hyndeok Lee and Shinhoo Kang, 'Firstprinciples and experimental investigation of the morphology of layer-structured $LiNiO_{2}$ and $LiCoO_{2}$', J. Mater. Chem., 22, 12874 (2012). https://doi.org/10.1039/c2jm31145c
  14. P. W. M. Jacobs, Yu. F. Zhukovskii, Yu. Mastrikov and Yu. N. Shunin, 'Bulk and surface properties of metallic aluminum: DFT simulation', Computer Modeling & New Technologies 6, 7 (2002).
  15. 박정기 외 14인, 리튬이차전지의 원리 및 응용, 우명찬, p266-p301, 홍릉과학출판사, 서울시 강북구 인수동 455-60 (2010).
  16. Kang Xu, 'Nonaqueous Liquid Electrolytes for Lithium- Based Rechargeable Batteries', Chem. Rev. 104, 4303 (2004). https://doi.org/10.1021/cr030203g
  17. D. Aurbach et al., 'The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into $Li_{x}MO_{y}$ Host Materials (M = Ni, Mn)', J. Electrochem. Soc. 147, 1322 (2000). https://doi.org/10.1149/1.1393357
  18. Ilias Belharouak et al., LITHIUM ION BATTERIES NEW DEVELOPMENTS, p101-p172, InTech, Janeza Tridine 9, 51000 Rijeka, Croatia (2010).
  19. K. Edstrom, T. Gustafsson and J. O. Thomas, 'The cathodeelectrolyte interface in the Li-ion battery', Electrochim. Acta. 50, 397 (2004). https://doi.org/10.1016/j.electacta.2004.03.049
  20. Pallavi Verma, Pascal Maire and Petr Novak, 'A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries', Electrochim. Acta. 55, 6332 (2010). https://doi.org/10.1016/j.electacta.2010.05.072
  21. P. Hohenberg and W. Kohn, 'Inhomogeneous Electron Gas', Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864
  22. W. Kohn and L. J. Sham, 'Self-Consistent Equations Including Exchange and Correlation Effects', Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  23. W. Kohn, 'An easy on condensed matter physics in the twentieth century', Rev. Mod. Phys. 71, S59 (1999). https://doi.org/10.1103/RevModPhys.71.S59
  24. P. E. Blchl, 'Projector augmented-wave method', Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  25. J. P. Perdew et al., 'Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation', Phys. Rev. B 46, 6671 (1992). https://doi.org/10.1103/PhysRevB.46.6671
  26. J. P. Perdew, K. Burke, M. Ernzerhof, 'Generalized Gradient Approximation Made Simple', Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  27. G. Kresse and J. Furthmuller, 'Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set', Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  28. G. Kresse and J. Furthmuller, 'Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set', Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  29. D. Vanderbilt, 'Soft self-consistent pseudopotentials in a generalized eigenvalue formalism', Phys. Rev. B 41, 7892 (1990). https://doi.org/10.1103/PhysRevB.41.7892
  30. G. Kresse and J. Hafner, 'Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements', J. Phys.: Condens. Matter 6, 8245 (1994). https://doi.org/10.1088/0953-8984/6/40/015
  31. L. D. Dyer, B. S. Borie and G. P. Smith, 'Alkali Metal- Nickel Oxides of the Type $MNiO_{2}$', J. Am. Chem. Soc. 76, 1499 (1954). https://doi.org/10.1021/ja01635a012
  32. H. J. Monkhorst and J. D. Pack, 'Special points for Brillouin-zone integrations', Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188