Browse > Article
http://dx.doi.org/10.4014/jmb.1101.01032

Enrichment of $CO_2$-Fixing Bacteria in Cylinder-Type Electrochemical Bioreactor with Built-In Anode Compartment  

Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University)
Jung, Il-Lae (Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute)
Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.6, 2011 , pp. 590-598 More about this Journal
Abstract
Bacterial assimilation of $CO_2$ into stable biomolecules using electrochemical reducing power may be an effective method to reduce atmospheric $CO_2$ without fossil fuel combustion. For the enrichment of the $CO_2$-fixing bacteria using electrochemical reducing power as an energy source, a cylinder-type electrochemical bioreactor with a built-in anode compartment was developed. A graphite felt cathode modified with neutral red (NR-graphite cathode) was used as a solid electron mediator to induce bacterial cells to fix $CO_2$ using electrochemical reducing power. Bacterial $CO_2$ consumption was calculated based on the variation in the ratio of $CO_2$ to $N_2$ in the gas reservoir. $CO_2$ consumed by the bacteria grown in the electrochemical bioreactor (2,000 ml) reached a maximum of approximately 1,500 ml per week. Time-coursed variations in the bacterial community grown with the electrochemical reducing power and $CO_2$ in the mineral-based medium were analyzed via temperature gradient gel electrophoresis (TGGE) of the 16S rDNA variable region. Some of the bacterial community constituents noted at the initial time disappeared completely, but some of them observed as DNA signs at the initial time were clearly enriched in the electrochemical bioreactor during 24 weeks of incubation. Finally, Alcaligenes sp. and Achromobacter sp., which are capable of autotrophically fixing $CO_2$, were enriched to major constituents of the bacterial community in the electrochemical bioreactor.
Keywords
Electrochemical reducing power; $CO_2$-fixing bacteria; electrochemical bioreactor; built-in anode compartment; neutral red-modified cathode;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Schouten, S., M. Strous, M. M. M. Kuypers, W. I. C. Rijpstra, M. Bass, C. J. Schubert, M. S. M. Jetten, and J. S. S. Damsté. 2004. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 70: 3785-3788.   DOI   ScienceOn
2 Small, F. J. and S. A. Ensign. 1995. Carbon dioxide fixation in the metabolism of propylene and propylene oxide by Xanthobacter strain Py2. J. Bacteriol. 177: 6170-6175.   DOI
3 Stead, D. E. 1992. Grouping of plant pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol. 42: 281-295.   DOI
4 Tabita, F. R. 1988. Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol. Rev. 52: 155-189.
5 Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100-180.
6 Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61.   DOI
7 Radmer, R. J. 1996. Algal diversity and commercial algal products. BioScience 46: 263-270.   DOI   ScienceOn
8 Riccardi, G., S. Sora, and O. Ciferri. 1981. Production of amino acids by analog-resistant mutants of the cyanobacterium Spirulina platensis. J. Bacteriol. 149: 361-363.
9 Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 693-703.
10 Moat, A. G., J. W. Foster, and M. P. Spector. 2002. Microbial Physiology, pp. 434-444. 4th Ed. Wiley-Liss, New York, NY.
11 Ohmura, N., K. Sasaki, N. Matsumoto, and H. Saiki. 2002. Anaerobic respiration using $Fe^{3+}$, $S^o$, and $H_2$in the chemoautotrophic bacterium Acidithiobacillus ferroxidans. J. Bacteriol. 184: 2081- 2087.   DOI   ScienceOn
12 Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410.
13 Park, D. H. and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292-1297.   DOI   ScienceOn
14 Park, D. H., M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-1917.
15 Ramos-Vera, W. H., I. A. Berg, and G. Fuchs. 2009. Autotrophic carbon dioxide assimilation in Thermoproteales revisited. J. Bacteriol. 191: 4286-4297.   DOI   ScienceOn
16 Reutz, I., P. Schobert, and B. Bowien. 1982. Effect of phosphoglycerate mutase deficiency on heterotrophic and autotrophic carbon metabolism of Alcaligenes eutrophus. J. Bacteriol. 151: 8-14.
17 Friedrich, C. 1982. Derepression of hydrogenase during limitation of electron donor and derepression of ribulosebiophosphate carboxylase during carbon limitation of Alcaligenes eutrophus. J. Bacteriol. 149: 203-210.
18 Deng, M. D. and J. R. Coleman. 1999. Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol. 65: 523-528.
19 Eichner, C. A., R. W. Erd, K. H. Timmis, and I. Wagner-Dobler. 1999. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl. Environ. Microbiol. 65: 102-109.
20 Freter, A. and B. Bowien. 1994. Identification of a novel gene, aut, involved in autotrophic growth of Alcaligenes eutrophus.J. Bacteriol. 176: 5401-5408.   DOI
21 Hamilton, R. R., R. H. Burris, P. W. Wilson, and C. H. Wang. 1965. Pyruvate metabolism, carbon dioxide assimilation, and nitrogen fixation by an Achromobacter species. J. Bacteriol. 89: 647-653.
22 Jeon, B. Y., H. N. Seo, S. W. Kang, and D. H. Park. 2010. Effect of electrochemical redox reaction on biochemical ammonium oxidation and chemical nitrite oxidation. J. Microbiol. Biotechnol. 20: 485-493.
23 Lee, W. J. and D. H. Park. 2009. Electrochemical activation of nitrate reduction to nitrogen by Ochrobactrum sp. G3-1 using a noncompartmented electrochemical bioreactor. J. Microbiol. Biotechnol. 19: 836-844.
24 Jeon, B. Y., S. Y. Kim, Y. K. Park, and D. H. Park. 2009. Enrichment of hydrogenotrophic methanogens in coupling with methane production using electrochemical bioreactor. J. Microbiol. Biotechnol. 19: 1665-1671.
25 Jeon, B. Y., T. S. Hwang, and D. H. Park. 2009. Electrochemical and biochemical analysis of ethanol fermentation of Zymomonas mobilis KCCM11336. J. Microbiol. Biotechnol. 19: 666-674.
26 Kang, H. S., B. K. Na, and D. H. Park. 2007. Oxidation of butane to butanol coupled to electrochemical redox reaction of $NAD^+$/NADH. Biotech. Lett. 29: 1277-1280.   DOI   ScienceOn
27 Bowien, B. and G. Schlegel. 1981. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu. Rev. Microbiol. 35: 405-452.   DOI   ScienceOn
28 Alber, B., M. Olinger, A. Reider, D. Kockelkorn, B. Jobst, M. Hügler, and G. Fuchs. 2006. Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archeal Metallosphaera and Sulfolobus spp. J. Bacteriol. 188: 8551-8559.   DOI   ScienceOn
29 Belay, A., Y. Ota, K. Miyakawa, and H. Shimamatsu. 1993. Current knowledge on potential health benefits of Spirulina. J. Appl. Phycol. 5: 235-341.   DOI   ScienceOn
30 Bowien, B., U. Windhövel, J.-G. Yoo, R. Bednarski, and B. Kusian. 1990. Genetic of $CO_2$ fixation in the chemoautotroph Alcaligenes eutrophus. FEMS Microbiol. Lett. 87: 445-450.   DOI   ScienceOn
31 Campbell 3rd, J., S. E. Stevens Jr., and D. L. Balkwill. 1982. Accumulation of poly-beta-hydroxybutyrate in Spirulina platensis. J. Bacteriol. 149: 361-363.
32 Cheung, P. Y. and B. K. Kinkle. Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soil. Appl. Environ. Microbiol. 67: 2222-2229.
33 Cogdell, R. J., N. W. Isaacs, T. D. Howard, K. McLuskey, N. J. Fraser, and S. M. Prince. 1999. How photosynthetic bacteria harvest solar energy (minireview). J. Bacteriol. 181: 3869-3879.
34 Madigan, M. T., J. M Martinko, P. V. Dunlap, and D. P. Clark. 2009. Brock Biology of Microorganisms, pp. 401-412. 12th Ed. Pearson, San Francisco, CA.
35 Leadbeater, L. and B. Bowien. 1984. Control of autotrophic carbon assimilation in Alcaligenes eutrophus by inactivation and reaction of phosphoribulokinase. J. Bacteriol. 57: 95-99.   DOI
36 McMurry, J. 2008. Organic Chemistry, pp. 618, 766-767. 7th Ed. Thomson Learning Inc., Singapore.