Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00220

Combined Effect of Catholyte Gap and Cell Voltage on Syngas Ratio in Continuous CO2/H2O Co-electrolysis  

Ha, Min Gwan (Center for Hydrogen.Fuel Cell Research, Korea Institute of Science and Technology (KIST))
Na, Youngseung (Department of Mechanical and Information Engineering, University of Seoul)
Park, Hee Young (Center for Hydrogen.Fuel Cell Research, Korea Institute of Science and Technology (KIST))
Kim, Hyoung-Juhn (Center for Hydrogen.Fuel Cell Research, Korea Institute of Science and Technology (KIST))
Song, Juhun (School of Mechanical Engineering, Pusan National University)
Yoo, Sung Jong (Center for Hydrogen.Fuel Cell Research, Korea Institute of Science and Technology (KIST))
Kim, Yong-Tae (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
Park, Hyun S. (Center for Hydrogen.Fuel Cell Research, Korea Institute of Science and Technology (KIST))
Jang, Jong Hyun (Center for Hydrogen.Fuel Cell Research, Korea Institute of Science and Technology (KIST))
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.4, 2021 , pp. 406-414 More about this Journal
Abstract
Electrochemical devices are constructed for continuous syngas (CO + H2) production with controlled selectivity between CO2 and proton reduction reactions. The ratio of CO to H2, or the faradaic efficiency toward CO generation, was mechanically manipulated by adjusting the space volume between the cathode and the polymer gas separator in the device. In particular, the area added between the cathode and the ion-conducting polymer using 0.5 M KHCO3 catholyte regulated the solution acidity and proton reduction kinetics in the flow cell. The faradaic efficiency of CO production was controlled as a function of the distance between the polymer separator and cathode in addition to that manipulated by the electrode potential. Further, the electrochemical CO2 reduction device using Au NPs presented a stable operation for more than 23 h at different H2:CO production levels, demonstrating the functional stability of the flow cell utilizing the mechanical variable as an important operational factor.
Keywords
Electrocatalysis; CO2 Reduction; Syngas; Device; Membrane Electrode Assembly;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Jia, X. Yu, L. Zhang, J. Power Sources, 2014, 252, 85-89.   DOI
2 Y. Mun, S. Lee, A. Cho, S. Kim, J.W. Han, J. Lee, Appl. Catal. B-Environ., 2019, 246, 82-88.   DOI
3 C. Delacourt, J. Newman, J. Electrochem. Soc., 2010, 157(12), B1911.   DOI
4 E.J. Dufek, T.E. Lister, M.E. McIlwain, J. Appl. Electrochem., 2011, 41(6), 623-631.   DOI
5 S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, T.J. Meyer, J. Am. Chem. Soc., 2014, 136(22), 7845-7848.   DOI
6 A. Goyal, G. Marcandalli, V.A. Mints, M.T.M. Koper, J. Am. Chem. Soc., 2020, 142(9), 4154-4161.   DOI
7 E.J. Dufek, T.E. Lister, S.G. Stone, M.E. McIlwain, J. Electrochem. Soc., 2012, 159(9), F514.   DOI
8 Y.H. Chung, M.G. Ha, Y. Na, H.Y. Park, H.J. Kim, D. Henkensmeier, S.J. Yoo, J.Y. Kim, S.Y. Lee, S.W. Lee, H. S. Park, Y-T Kim, J. H. Jang, Electroanalysis, 2019, 31(7), 1401-1408.   DOI
9 A.J. Bard, L.R. Faulkner, Electrochemical Methods, 2001, 2(482), 580-632.
10 W. Wang, Y. Yung, A. Lacis, T. Mo, J. Hansen, Science, 1976, 194(4266), 685-690.   DOI
11 D.A. Lashof, D.R. Ahuja, Nature, 1990, 344(6266), 529-531.   DOI
12 M.I. Hoffert, K. Caldeira, G. Benford, D.R. Criswell, C. Green, H. Herzog, A.K. Jain, H.S. Kheshgi, K.S. Lackner, J.S. Lewis, Science, 2002, 298(5595), 981-987.   DOI
13 K. Riahi, E.S. Rubin, M.R. Taylor, L. Schrattenholzer, D. Hounshell, Energy Economics, 2004, 26(4), 539-564.   DOI
14 S. Chu, Science, 2009. 325(5948), 1599.   DOI
15 J.C. Abanades, E.S. Rubin, M. Mazzotti, H.J. Herzog, Energy Environ. Sci., 2017, 10(12), 2491-2499.   DOI
16 F.M. Baena-Moreno, M. Rodriguez-Galan, F. Vega, B. Alonso-Farinas, L.F. Vilches Arenas, B. Navarrete, Energy Sources Part A: Recovery, Utilization,, E. Effects, 2019, 41(12), 1403-1433.   DOI
17 A.S.R. Machado, A.V. Nunes, M.N. da Ponte, J. Supercrit. Fluid., 2018, 134, 150-156.   DOI
18 W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A.A. Peterson, S. Sun, J. Am. Chem. Soc., 2014, 136(46), 16132-16135.   DOI
19 M.E. Dry, Catal. Today, 2002, 71(3-4), 227-241.   DOI
20 Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc., 2012, 134(49), 19969-19972.   DOI
21 S. Back, M.S. Yeom, Y. Jung, ACS Catal., 2015, 5(9), 5089-5096.   DOI
22 X. Peng, S.G. Karakalos, W.E. Mustain, ACS Appl. Mater. Interfaces., 2018, 10(2), 1734-1742.   DOI
23 S. Hernandez, M.A. Farkhondehfal, F. Sastre, M. Makkee, G. Saracco, N. Russo, Green Chem., 2017, 19(10), 2326-2346.   DOI
24 R. Lindsey, Climate Change: Atmospheric Carbon Dioxide, 2020.
25 C. Le Quere, M.R. Raupach, J.G. Canadell, G. Marland, Nat. Geosci., 2009, 2(12), 831-836.   DOI
26 N. Mac Dowell, P.S. Fennell, N. Shah, G.C. Maitland, Nat. Clim. Change., 2017, 7(4), 243-249.   DOI
27 H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser, B.R. Cuenya, J. Am. Chem. Soc., 2014, 136(47), 16473-16476.   DOI
28 J.-H. Kim, H. Woo, S.-W. Yun, H.-W. Jung, S. Back, Y. Jung, Y.-T. Kim, Appl. Catal. B-Environ., 2017, 213, 211-215.   DOI
29 W. Luo, J. Zhang, M. Li, A. Zuttel, ACS Catal., 2019, 9(5), 3783-3791.   DOI
30 W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang, F. Jiao, J. Am. Chem. Soc., 2017, 139(5), 1885-1893.   DOI
31 C. Delacourt, P.L. Ridgway, J.B. Kerr, J. Newman, J. Electrochem. Soc., 2008, 155(1), B42-B49.   DOI
32 Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo, K.L. Materna, W. Liu, V.S. Batista, G.W. Brudvig, H. Wang, J. Am. Chem. Soc., 2016, 138(26), 8076-8079.   DOI
33 W. Zhu, R. Michalsky, O.n. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, J. Am. Chem. Soc., 2013, 135(45), 16833-16836.   DOI
34 J. Choi, M.J. Kim, S.H. Ahn, I. Choi, J.H. Jang, Y.S. Ham, J.J. Kim, S.-K. Kim, Chem. Eng. J., 2016, 299, 37-44.   DOI
35 J. Rosen, G.S. Hutchings, Q. Lu, R.V. Forest, A. Moore, F. Jiao, ACS Catal., 2015, 5(8), 4586-4591.   DOI