• 제목/요약/키워드: stabilized cracking

검색결과 31건 처리시간 0.021초

A5083-H116 알루미늄 합금재 용접부의 부하응력에 따른 부식특성의 영향 (Effect of Corrosion Characteristics in Relation to Loaded Stress in the Welded Zone of A5083-H116 Aluminum Alloy)

  • 조상근;공유식;김영대
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.44-51
    • /
    • 2004
  • Effect of corrosion characteristics in relation to loaded stress in the welded zone of A5083-H116 aluminum alloy, in the seawater was studied. The corrosion experiment was performed for 120 hours on the specimens in the natural seawater tank with four steps of the loaded stress. The corrosion crack, corrosion rate, electrode potential, current, and corrosion pattern, etc. were examined for the specimens with the elapse of the immersion time. The main result derived from this study is the crack growth length is increased with the increasing loaded stress. The electrode potential and the corrosion current are decreased rapidly in the early stage of the corrosion, and then decreased gradually and stabilized eventually with the elapse of the immersion time. The test condition of the longer crack growth tends to show the higher corrosion rate. Corrosion pattern of the welded zone indicates that the depth and width of the pitting become increasing with the increasing loaded stress.

  • PDF

Characteristics of Sr0.92Y0.08TiO3-δ Anode in Humidified MethaneFuel for Intermediate Temperature Solid Oxide Fuel Cells

  • Park, Eun Kyung;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.33-40
    • /
    • 2016
  • Sr0.92Y0.08TiO3-δ (SYT) was investigated as an alternative anode in humidified CH4 fuel for SOFCs at low temperatures (650 ℃-750 ℃) and compared with the conventional Ni/yttria-stabilized zirconia (Ni/YSZ) anode. The goal of the study was to directly use a hydrocarbon fuel in a SOFC without a reforming process. The cell performance of the SYT anode was relatively low compared with that of the Ni/YSZ anode because of the poor electrochemical catalytic activity of SYT. In the presence of CH4 fuel, however, the cell performance with the SYT anode decreased by 20%, in contrast to the 58% decrease in the case of the Ni/YSZ anode. The severe degradation of cell performance observed with the Ni/YSZ anode was caused by carbon deposition that resulted from methane thermal cracking. Carbon was much less detected in the SYT anode due to the catalytic oxidation. Otherwise, a significant amount of bulk carbon was detected in the Ni/YSZ anode.

초초임계 석탄발전 보일러 튜브(SA213 TP347H) 용접부 안정화 열처리 효과 (Effect on the Stabilizing Heat Treatment to Weld Joint for the USC Coal Boiler Tubes(SA213 TP347H))

  • 안종석;박진근;이길재;윤재연
    • Journal of Welding and Joining
    • /
    • 제33권4호
    • /
    • pp.30-36
    • /
    • 2015
  • Austenite stainless steel(SA213-TP347H) has widely been used for the superheater & reheater tube in USC(ultra-supercritica) coal boiler because of its high creep rupture strength and anti-oxidation. But recently, the short-term failures have happened frequently in heat affected zone for only 4,000~15,000hours of service. Many investigations have been conducted to understand the failure mechanism. The root cause of failure was comfirmed to "strain induce participation hardening crack" or "reheat cracking". This mechanism often occurred due to weld residual stress and precipitation of the Cr, Nb carbides in the stabilized stainless steel such as TP347H. This paper presents an analysis of failure tube and effect of the sample tubes that conducting stabilizing heat treatment in site after 11,380hours & 16,961hours of service. Visual inspection was performed. In addition, microscopic characteristics was identified by O.M, SEM, and hardness test was carried out to find out the heat treatment effects. Failures seem to happen because of being not conducted stabilizing heat treatment in site. And another cause is inadequate weld parameter such as pass, ampere, voltage, inter-pass temperature. Thus, this paper has the purpose to describe that how to prevent similar failures in those weld-joints.

Fumed Silica/Ceramic Wool 무기복합재의 제조 및 열적 성질 (Fabrication and Thermal Properties of Fumed Silica/Ceramic Wool Inorganic Composites)

  • 안원술
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.4007-4012
    • /
    • 2014
  • Fumed Silica와 섬유상의 Ceramic Wool을 사용하여 경량의 무기복합재 샘플을 제조하기 위한 조건과 만들어진 샘플의 단열특성을 살펴보았다. 정량된 Fumed Silica 미세분말과 Ceramic Wool을 혼합한 반죽을 몰드에 넣고 상온에서 안정화시킨 후에 $150^{\circ}C$ 오븐에서 완전히 건조하여 샘플을 제작하였다. 소량의 PVA 계면접착제를 사용하지 않는 샘플에서는 Fumed Silica 조성비가 10-70wt% 사이에서 벌크밀도가 0.6-0.8 $g/cm^3$이었으며, 50wt% 이상의 샘플에서는 건조 수축으로 인한 크랙현상이 관찰되었다. 그러나 3wt%의 PVA를 사용한 샘플의 벌크밀도는 절반 정도로 크게 감소하면서도 기계적 특성과 단열성은 향상되었다. 만들어진 샘플들은 $800^{\circ}C$ 이상의 고온에서도 열크랙 없이 안정한 열적 특성을 보여주었으며, 샘플의 단열성은 Fumed Silica 조성비가 높아질수록 향상되는 것으로 나타났다. Fumed Silica 30wt%인 샘플의 열전도도는 $500^{\circ}C$에서 약 0.08 $W/m^{\circ}K$의 우수한 단열 특성을 보여 주었다.

$Nb_3Sn$ 복합초전도 테이프의 미시적 변형거동 특성평가를 위한 음향방출기법 적용에 관한 연구 (A Study on Microscopic Deformation Behaviors of $Nb_3Sn$ Superconducting Composite Tape using Acoustic Emission Technique)

  • 이민래;이준현
    • Composites Research
    • /
    • 제12권6호
    • /
    • pp.22-30
    • /
    • 1999
  • $Nb_3Sn$ 복합초전도 테이프는 금속간 화합물로서 다른 초전도 재료에 비하여 임계밀도가 높아 MRI등에 널리 이용되고 있다. 한편 $Nb_3Sn$층은 화합물이므로 bending이나 winding등의 코아 제작시 테이프 도체에 응력이 작용하면 화합물층에 취성으로 인한 크랙이 발생하여 부분적으로 파단이 일어나 임계전류 특성이 열화하며 무응력 상태에 비하여 크게 저하된다. 따라서 이와 같은 $Nb_3Sn$복합초전도 테이프의 실질적인 적용을 위해서는 선재의 제조과정 뿐만 아니라 가동 중에 기계적 응력에 대한$Nb_3Sn$복합 초전도 테이프의 미시적 거동 특성을 필히 이해하여야 할 필요가 있다. 본 연구에서는 음향방출기법(Acoustic Emission)을 이용하여 $Nb_3Sn$ 복합초전도 테이프에 대해서 일정변형속도(constant extension rate)제어로 인장하중이 작용할 경우 발생하는 AE 신호특성과 이에 대응하는 각 화합물층의 미시적 변형거동 특성과의 상관관계를 분석하였다.

  • PDF

In-situ electron beam growth of $YBa_2Cu_3O_{7-x}$ coated conductors on metal substrates

  • Jo, W.;Ohnishi, T.;Huh, J.;Hammond, R.H.;Beasley, M.R.
    • Progress in Superconductivity
    • /
    • 제8권2호
    • /
    • pp.175-180
    • /
    • 2007
  • High temperature superconductor $YBa_2Cu_3O_{7-x}$ (YBCO) films have been grown by in-situ electron beam evaporation on artificial metal tapes such as ion-beam assisted deposition (IBAD) and rolling assisted biaxially textured substrates (RABiTS). Deposition rate of the YBCO films is $10{\sim}100{\AA}/sec$. X-ray diffraction shows that the films are grown epitaxially but have inter-diffusion phases, like as $BaZrO_3\;or\;BaCeO_3$, at their interfaces between YBCO and yttrium-stabilized zirconia (YSZ) or $CeO_2$, respectively. Secondary ion mass spectroscopy depth profile of the films confirms diffused region between YBCO and the buffer layers, indicating that the growth temperature ($850{\sim}900^{\circ}C$) is high enough to cause diffusion of Zr and Ba. The films on both the substrates show four-fold symmetry of in-plane alignment but their width in the -scan is around $12{\sim}15^{\circ}$. Transmission electron microscopy shows an interesting interface layer of epitaxial CuO between YBCO and YSZ, of which growth origin may be related to liquid flukes of Ba-Cu-O. Resistivity vs temperature curves of the films on both substrates were measured. Resistivity at room temperature is between 300 and 500 cm, the extrapolated value of resistivity at 0 K is nearly zero, and superconducting transition temperature is $85{\sim}90K$. However, critical current density of the films is very low, ${\sim}10^3A/cm^2$. Cracking of the grains and high-growth-temperature induced reaction between YBCO and buffer layers are possible reasons for this low critical current density.

  • PDF

무전해 도금법으로 제조된 구리 함유 활성탄소섬유 촉매의 제조와 NO 제거 반응성 평가 (Preparation of Electroless Copper Plated Activated Carbon Fiber Catalyst and Reactive Evaluation of NO Removal)

  • 윤희승;오종현;이형근;전종기;유승곤
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.863-867
    • /
    • 2008
  • 피치계 활성탄소섬유가 납사분해 잔사유를 개질하여 용융 방사하고, 산화, 탄화 및 스팀으로 활성화하여 제조되었다. 활성탄소섬유의 표면은 주석-팔라듐을 사용하여 단일 스텝에 의해 예민화 과정을 거쳤다. 예민화된 활성탄소섬유 표면에 무전해도금법을 사용하여 구리를 골고루 담지하였다. 도금시간을 증가시켜서 구리의 담지량을 변화시키고, BET, SEM, XRD 및 ICP를 이용하여 촉매 특성 변화에 미치는 영향을 관찰하였다. 도금시간에 따라 부가된 구리의 양은 증가하나, 기공부피와 비표면적은 감소하였다. 또한 반응 온도가 증가함에 따라 NO 제거 성능이 증가하였다. $300^{\circ}C$ 이상의 반응 온도에서 부가된 구리의 양이 증가하면 표면적의 감소와 구리 분산도의 감소 때문에 NO 제거 성능은 감소하는 결과를 얻었다.

Performance of fly ash stabilized clay reinforced with human hair fiber

  • Rekha, L. Abi;Keerthana, B.;Ameerlal, H.
    • Geomechanics and Engineering
    • /
    • 제10권5호
    • /
    • pp.677-687
    • /
    • 2016
  • Industrialization and urbanization are the two phenomena that are going relentless all over the world. The consequence of this economic success has been a massive increase in waste on one hand and increasing demand for suitable sites for construction on the other. Owing to the surplus raw materials and energy requirement needed for manufacturing synthetic fibers, applications of waste fibers for reinforcing soils evidenced to offer economic and environmental benefits. The main objective of the proposed work is to explore the possibilities of improving the strength of soil using fly ash waste as an admixture and Human Hair Fiber (HHF) as reinforcement such that they can be used for construction of embankments and land reclamation projects. The effect of fiber content on soil - fly ash mixture was observed through a series of laboratory tests such as compaction tests, CBR and unconfined compression tests. From the stress - strain curves, it was observed that the UCC strength for the optimised soil - flyash mixture reinforced with 0.75% human hair fibers is nearly 2.85 times higher than that of the untreated soil. Further, it has been noticed that there is about 7.73 times increase in CBR for the reinforced soil compared to untreated soil. This drastic increase in strength may be due to the fact that HHF offer more pull-out resistance which makes the fibers act like a bridge to prevent further cracking and thereby it improves the toughness which in turn prevent the brittle failure of soil-flyash specimen. Hence, the test results reveal that the inclusion of randomly distributed HHF in soil significantly improves the engineering properties of soil and can be effectively utilized in pavements. SEM analysis explained the change of microstructures and the formation of hydration products that offered increase in strength and it was found to be in accordance with strength tests.

Post-yielding tension stiffening of reinforced concrete members using an image analysis method with a consideration of steel ratios

  • Lee, Jong-Han;Jung, Chi-Young;Woo, Tae-Ryeon;Cheung, Jin-Hwan
    • Advances in concrete construction
    • /
    • 제7권2호
    • /
    • pp.117-126
    • /
    • 2019
  • When designing reinforced concrete (RC) members, the rebar is assumed to resist all tensile forces, but the resistance of the concrete in the tension area is neglected. However, concrete can also resist tensile forces and increase the tensile stiffness of RC members, which is called the tension stiffening effect (TSE). Therefore, this study assessed the TSE, particularly after yielding of the steel bars and the effects of the steel ratio on the TSE. For this purpose, RC member specimens with steel ratios of 2.87%, 0.99%, and 0.59% were fabricated for uniaxial tensile tests. A vision-based non-contact measurement system was used to measure the behavior of the specimens. The cracks on the specimen at the stabilized cracking stage and the fracture stage were measured with the image analysis method. The results show that the number of cracks increases as the steel ratio increases. The reductions of the limit state and fracture strains were dependent on the ratio of the rebar. As the steel ratio decreased, the strain after yielding of the RC members significantly decreased. Therefore, the overall ductility of the RC member is reduced with decreasing steel ratio. The yielding plateau and ultimate load of the RC members obtained from the proposed equations showed very good agreement with those of the experiments. Finally, the image analysis method was possible to allow flexibility in expand the measurement points and targets to determine the strains and crack widths of the specimens.

경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가 (Evaluation of Thermal Durability for Thermal Barrier Coatings with Gradient Coating Thickness)

  • 이승수;김준성;정연길
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.248-255
    • /
    • 2020
  • 경사화 두께를 갖는 열차폐 코팅의 열적 내구성과 열적 안정성에 대한 코팅층 두께의 영향을 화염 열피로 시험과 열충격 시험을 통해서 조사하였다. Bond 층과 top 층은 각각 Ni-Cr계 상용 MCrAlY 분말과 상용 이트리아 안정화 지르코니아 (YSZ) 분말을 사용하여 니켈기지의 초내열합금 모재 (GTD-111)에 대기 플라즈마 용사법 (APS)으로 코팅층을 형성하였다. 1100 ℃의 화염으로 1429회 열피로 시험 후 bond 층이 일부 산화되고 top 층과 bond 층 계면에서 열화에 의한 산화층 (TGO)이 관찰되었으나, 코팅층 부위와 관계없이 균열이나 박리현상 없는 양호한 미세구조를 나타내었다. 1100 ℃ 열충격 시험결과, 37회 열충격 테스트 후 코팅층의 얇은 부위에서 박리가 시작되어 98회 시험 후 코팅층의 50% 이상이 박리되었으며, 코팅층의 두께가 얇게 형성된 부위는 코팅층이 두껍게 형성된 부위에 비해, top 층의 박리와 함께 bond 층의 산화가 많이 진행되었으며, 코팅층 두께가 상대적으로 두껍게 형성된 부위에서 열차폐 효과의 증가로 인해 bond 층의 내산화성과 열적 안정성이 우수한 것으로 나타났다.