Browse > Article
http://dx.doi.org/10.5762/KAIS.2014.15.6.4007

Fabrication and Thermal Properties of Fumed Silica/Ceramic Wool Inorganic Composites  

Ahn, WonSool (Department of Chemical Engineering, Keimyung University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.15, no.6, 2014 , pp. 4007-4012 More about this Journal
Abstract
This study examined the fabrication and thermal properties of fumed silica/ceramic wool inorganic composites. A predetermined quantity of fumed silica and ceramic wool was mixed uniformly into a slurry state and stabilized in the mold at room temperature, and converted to a massive foamed body through a complete drying process at $150^{\circ}C$. Although the samples without polyvinyl alcohol (PVA) as an interfacial adhesive showed a bulk density of 0.6-0.8 $g/cm^3$ in the range, 10-70wt% fumed silica, those samples with 3wt% PVA exhibited remarkably lower bulk densities with enhanced mechanical and thermal insulation properties, without thermal cracking even above $800^{\circ}C$. The K-factor of the samples was lower in proportion to the fumed silica contents, showing good thermal insulation properties of ca. 0.08 $W/m^{\circ}K$ at $500^{\circ}C$ for the sample with 30wt% fumed silica.
Keywords
Fumed Silica; Ceramic Wool; Inorganic Composite; thermal conductivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Zheng, Y. Zheng, R. Ning, "Effects of nanoparticle SiO2 on the performance of nanocomposites, Mater. Lett., 57, pp. 2940-2944, 2003. DOI: http://dx.doi.org/10.1016/S0167-577X(02)01401-5   DOI   ScienceOn
2 M. H. G. Wichmann, M. Cascione, B. Fiedler, M. Quaresimin, K. Schulte, "Influence of Surface treatment on mechanical behaviour of fumed silica/epoxy nanocomposites", Comp. Interf., 13, pp. 699-715, 2006. DOI: http://dx.doi.org/10.1163/156855406779366723   DOI   ScienceOn
3 M. A. Kumar, K. H. Reddy, Y. V. M. Reddy, G. R. Reddy, N. S. V. Kumar, and B. H. N. Reddy, "ABeBment of nanoclay filled epoxy on mechanical, thermal and chemical resistance properties of nanocomposites", J. Metal. Mater. Sci., 52, pp. 305-315, 2010.
4 C.-T. Lee, M. Jang, and T-M. Park, "A Foamed Body through the Complexation with the Sepiolite and Expanded Pearlite", Appl. Chem. Eng., 23(1), pp. 77-85, 2012.
5 Morgan ThermalCeramics, www.morganthermalceramics.com
6 DeguBa, Technical information, No.1271
7 B. ClauB, "Fibers for Ceramic Matrix Composites", Ceramic Matrix Composites, ed. W. Krenkel, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp.1-20, 2008.
8 A. Berge and P. JohanBon, "Literature Review of High Performance Thermal Insulation", Chalmers Civil and Environmental Engineering, Report 2012:2.
9 B. ClauB and D. Schawaller, "Modern Aspects of Ceramic Fiber Development", Advances in Science and Technology, 50, pp. 1-8, 2006. DOI: http://dx.doi.org/10.4028/www.scientific.net/AST.50.1   DOI
10 W. Krenkel,R. Naslain, and H. Schneider, High Temperature CeramicMatrix Composites, Wiley - VCH Verlag GmbH,Weinheim, 2001.
11 M. A. Kumar, G. R. Reddy, V. P.Chandrakar, "Hydrophilic fumed silica/clay nanocomposites: Effect of silica/clay on performance", International Journal of Nanomaterials and Biostructures, 1(1), pp. 1-11, 2011. DOI: http://dx.doi.org/10.1155/2011/189731   DOI
12 X. Yibin, Yoshihisa, G. Hongbo, Y. Masayoshi, "Prediction of thermal conductivity of composite materials", Power and Energy Systems, 2, pp.1048-1059, 2008.   DOI