• 제목/요약/키워드: stabilized combustion

검색결과 153건 처리시간 0.029초

통합형 연료분사장치를 통한 연소불안정 저감 (Reduction of combustion instability using flame holder integrated injector)

  • 황용석;이종근;박익수;최호진;진유인;윤현걸;임진식
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.432-437
    • /
    • 2010
  • V-gutter 형 화염안정화장치를 장착한 공기흡입식 엔진의 연소기에서 발생하는 저주파 연소 불안정을 저감시키기 위해 화염안정화장치 뒤쪽에 2차 연료를 분사하는 장치를 고안하였다. 해당 장치는 모델 연소장치를 통해 성공적으로 발생된 110~120 Hz, 180dB 크기의 저주파 연소불안정을 84%까지 저감시키는 데에 성공하였다. 연소불안정의 감소는 2차 연료 공급 유량에만 의존하였으며, 특정 값 이상의 연료 공급량에서만 효과가 나타났다. 이와같은 결과는 2차 연료 공급에 의해 화염안정화장치 뒷면의 화염이 주연료 공급량의 섭동과 독립적으로 유지되어 연소 시스템과 연소기의 음향 시스템의 연계를 끊어주기 때문인 것으로 생각된다.

  • PDF

전단동축형인젝터를 통해 분사된 메탄-산소 이원추진제의 연소특성 (Combustion Characteristics of the Methane-Oxygen Bipropellant Injected by a Shear-coaxial Injector)

  • 홍준열;배성훈;배대석;김정수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.787-790
    • /
    • 2017
  • 본 연구는 이원추진제 추력기(thruster)에 사용되는 메탄-산소 연소특성규명의 선행연구로서 모델연소실 내 전단동축형인젝터를 통해 분사된 기체메탄-기체산소 비예혼합화염의 연소안정한계 및 화염형상을 도출하기 위한 실험적 연구가 수행되었다. DSLR 카메라를 이용하여 화염 직접이미지(direct image)를 촬영하였고, 이미지 후처리(post-processing)를 통해 연소특성파악 및 화염길이 정량화를 수행하였다. 그 결과, 산화제 레이놀즈 수($Re_o$)가 증가함에 따라 이론반응비(stoichiometric ratio)에서 안정된 화염이 발생하였고, 동일 인젝터직경 조건에서 난류화염의 길이가 늘어남을 확인하였다.

  • PDF

초소형 리포머용 2단 초소형 연소기 내 연소특성에 관한 연구 (Combustion Characteristics in a Two-staged Microcombustor for a Micro Reformer System)

  • 김기백;권오채
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2238-2243
    • /
    • 2007
  • A new microcombustor configuration for a micro fuel-cell reformer integrated with a micro evaporator was studied experimentally and computationally. The present microcombustor is simply cylindrical to be easily fabricated but two-staged, expending downstream, to feasibly control ignition and stable burning. Results show that the aspect ratio of the first stage and the wall thickness of the microcombustors substantially affect ignition and thermal characteristics. For the optimized design conditions, a premixed microflame was easily ignited in the expanded second stage combustor, moved into the smaller first stage combustor, and finally stabilized therein. The measured and predicted temperature distributions across the microcombustor walls indicated that heat generated in the microcombustor is well transferred. Thus, the present microcombustor configuration could be applied to the practical micro reformers integrated with a micro evaporator for use of fuel cells.

  • PDF

가스터빈 연소기 기본형상 결정에 관한 연구 (A Study on the Preliminary Design of Gas Turbine Combustor)

  • 안국영;김한석;김관태;배진호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1997년도 제15회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.135-151
    • /
    • 1997
  • The preliminary design and performance test for determining dimensions of gas turbine combustor were investigated. The combustor design program was developed and applied to design our combustor. and detailed design for determining of swirler. dome and liner holes were performed experimentally. The swirler. which govern the combustion characteristics of combustor, was determined $40^{\circ}$ as swirl angle at first performance test. After second performance test the swirler was re-determined by 24 mm i.d.. 34 mm o.d., and swirl angle of $45^{\circ}$. The geometry of liner holes were determined by considering the flame stability and recirculation zone size. It was found that flame can be more easily stabilized by adjusting the swirier dimensions rather than liner holes. The geometry of swirler and liner holes were re-determined by final performance test with dilution holes. Also. the performance of combustor was evaluated by analysis of exhaust gases.

  • PDF

기울어진 예혼합 평면화염의 안정성 (Stability of Inclined Premixed Planar Flames)

  • 이대근;김문언;신현동
    • 한국연소학회지
    • /
    • 제9권4호
    • /
    • pp.9-21
    • /
    • 2004
  • Stability of laminar premixed planar flames inclined in the gravitational field is asymptotically examined. The flame structure is resolved by a large activation energy asymptotics and a long wave approximation. The coupling between hydrodynamics and diffusion processes is included and near-unity Lewis number is assumed. The results show that as the flame is more inclined from the horizontal plane it becomes more unstable due to not only the decrease of stabilizing effect of gravity but also the increase of destabilizing effect of rotational flow. The obtained dispersion relation involves the Prandtl number and shows the destabilizing effect of viscosity. The analysis predicts that the phase velocity of unstable flame wave depends on not only the flame angle but also the Lewis number. For relatively short wave disturbances, still much larger than flame thickness, the most unstable wavelength is nearly independent on the flame angle and the flame can be stabilized by gravity and diffusion mechanism.

  • PDF

재연소가 열전달 특성과 $NO_x$ 감소에 미치는 영향 (Effects of Reburning on Heat Transfer Characteristics and $NO_x$ Reduction)

  • 이창엽;백승욱
    • 한국연소학회지
    • /
    • 제10권2호
    • /
    • pp.18-25
    • /
    • 2005
  • An experimental study has been conducted to evaluate the effects of reburning on $NO_x$ reduction and also to examine heat transfer characteristics from LPG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The effects of reburn fuel fraction and injecting location of reburn fuel are studied. The paper reports data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. In a steady state, the total as well as radiative heat flux from the flame to the wall of furnace has been measured using a heat flux meter. Temperature distribution and emission formation in furnace have been also measured and compared.

  • PDF

수송확률밀도함수 모델을 이용한 난류비예혼합 파일럿 안정화 화염장 해석 (Numerical Study on Turbulent Nonpremixed Pilot Stabilized Flame using the Transported Probability Density Function Model)

  • 이정원;김용모
    • 한국연소학회지
    • /
    • 제15권4호
    • /
    • pp.15-21
    • /
    • 2010
  • The transported probability density function(PDF) model has been applied to simulate the turbulent nonpremixed piloted jet flame. To realistically account for the mixture fraction PDF informations on the turbulent non-premixed jet flame, the present Lagrangian PDF transport approach is based on the joint velocity-composition-turbulence frequency PDF formulation. The fluctuating velocity of stochastic fields is modeled by simplified Langevin model(SLM), turbulence frequency of stochastic fields is modeled by Jayesh-Pope model and effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate the present approach, the numerical results obtained by the joint velocity-composition-turbulence frequency PDF model are compared with experimental data in terms of the unconditional and conditional means of mixture fraction, temperature and species and PDFs.

대향류 채널 소형 열재생 연소기의 화염안정 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Flame Stabilization in a Small Heat-Regenerative Combustor of Counter-Current Channels)

  • 조상문;김남일
    • 대한기계학회논문집B
    • /
    • 제31권5호
    • /
    • pp.491-498
    • /
    • 2007
  • Flame characteristics of a methane-air premixed flame stabilized in a heat-regenerative small combustor were investigated experimentally. A small combustor having two counter-current shallow channels and a combustion space at one side was developed. In which the channel-gap was less the ordinary quenching distance of a stoichiometric methane-air premixed flame. Two design parameters of channel gap and thickness of the middle wall, which is located between two channels for unburned and burned gases, were varied. Flame stabilization conditions and characteristic flame behaviors were experimentally examined. Conclusively, Blowout conditions were governed mostly by the scale of the combustion space, and flashback conditions into the channel are dominated by the channel gap. Surface temperatures of the combustor were between 100 to 500$^{\circ}C$. Additionally, two distinctive flame stabilization modes of radiation and well-stirred?reaction were observed and their applicability was discussed.

확대관 흐름에 있어서 화염의 안정성 및 구조에 관한 연구 (A Study on the Flame Structure and Stabilization in a Divergent Flow)

  • 최병륜;이중성
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.512-518
    • /
    • 1994
  • An experimental study is made on turbulent diffusion flames stabilized by a circular cylinder in a divergence flow. In this paper, stabilization characteristics and flame structure are examined by varying the divergence angle of duct and position of a circular cylinder. The fuel used is a commercial grade gaseous propane injected by two slit of rod. It is found that the positive pressure gradient greatly influences the eddy structure behind the rod. and that two different kinds of combustion patterns exist at the blowoff limit depending on the divergent angle of duct. They are distinguished by their wake structures: one associated with Karman vortex shedding, the other without it. Also, the blowoff velocity in the former is found to be higher than in the later.

고온 동축류에서 층류 화염의 부상특성 (Characteristics of Laminar Lifted Flame in High Temperature Coflow)

  • 김길남;원상희;차민석;정석호
    • 한국연소학회지
    • /
    • 제7권2호
    • /
    • pp.1-6
    • /
    • 2002
  • Characteristics of laminar lifted flames of propane highly-diluted with nitrogen have been investigated at various temperatures of coflow air. At various fuel mole fractions, the base of laminar lifted flames has the structure of tribrachial (or triple) flame. The liftoff heights are correlated well with the stoichiometric laminar burning velocity considering initial temperature at a given coflow velocity. It shows that lifted flames are stabilized on the basis of the balance mechanism between local flow velocity and the propagation speed of tribrachial flame, regardless of the temperature of coflow and fuel mole fraction. Lifted flames exist for a jet velocity even smaller than the stoichiometric laminar burning velocity, and liftoff velocity increases more rapidly than stoichiometric laminar burning velocity as coflow temperature increases. These can be attributed to the buoyancy effect due to the density difference.

  • PDF