• Title/Summary/Keyword: stability equations

Search Result 1,364, Processing Time 0.03 seconds

LYAPUNOV FUNCTIONS FOR NONLINEAR DIFFERENCE EQUATIONS

  • Choi, Sung Kyu;Cui, Yinhua;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.883-893
    • /
    • 2011
  • In this paper we study h-stability of the solutions of nonlinear difference system via the notion of $n_{\infty}$-summable similarity between its variational systems. Also, we show that two concepts of h-stability and h-stability in variation for nonlinear difference systems are equivalent. Furthermore, we characterize h-stability for nonlinear difference systems by using Lyapunov functions.

Comparison of multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations (비정상 Navier-Stokes 방정식의 수치해석을 위한 다단계 외재법의 성능 비교)

  • Seo,Yong-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.202-212
    • /
    • 1997
  • In this study, performance of the multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations is investigated. Three methods under consideration are 1 st-, 2 nd-, and 4 th-order Runge-Kutta (R-K) methods. Compared in this estimation is stability, accuracy, and CPU time of each method. The computational codes developed are applied to the two-dimensional flow in a square cavity driven by an oscillating lid. It turned out that at Reynolds number 400, the 1 st-order R-K method is the best, while at 3200 the 2 nd-order R-K is recommended. At higher Reynolds numbers, it is conjectured that the 4 th-order R-K method will be the best algorithm among three due to its highest stability.

ADDITIVE ρ-FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN BANACH SPACE

  • Paokanta, Siriluk;Shim, Eon Hwa
    • The Pure and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.219-227
    • /
    • 2018
  • In this paper, we solve the additive ${\rho}$-functional equations $$(0.1)\;f(x+y)+f(x-y)-2f(x)={\rho}\left(2f\left({\frac{x+y}{2}}\right)+f(x-y)-2f(x)\right)$$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < 1, and $$(0.2)\;2f\left({\frac{x+y}{2}}\right)+f(x-y)-2f(x)={\rho}(f(x+y)+f(x-y)-2f(x))$$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < |2|. Furthermore, we prove the Hyers-Ulam stability of the additive ${\rho}$-functional equations (0.1) and (0.2) in non-Archimedean Banach spaces.

Alternative Capturability Analysis of PN Laws

  • Ryoo, Chang-Kyung;Kim, Yoon-Hwan;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.1-13
    • /
    • 2006
  • The Lyapunov stability theory has been known inadequate to prove capturability of guidance laws because the equations of motion resulted from the guidance laws do not have the equilibrium point. By introducing a proper transformation of the range state, the original equations of motion for a stationary target can be converted into nonlinear equations with a specified equilibrium subspace. Physically, the equilibrium subspace denotes the direction of missile velocity to the target. By using a single Lyapunov function candidate, capturability of several PN laws for a stationary target is then proved for examples. In this approach, there is no assumption of the constant speed missile. The proposed method is expected to provide a unified and simplified scheme to prove the capturability of various kinds of guidance laws.

NUMERICAL SOLUTIONS FOR SPACE FRACTIONAL DISPERSION EQUATIONS WITH NONLINEAR SOURCE TERMS

  • Choi, Hong-Won;Chung, Sang-Kwon;Lee, Yoon-Ju
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1225-1234
    • /
    • 2010
  • Numerical solutions for the fractional differential dispersion equations with nonlinear forcing terms are considered. The backward Euler finite difference scheme is applied in order to obtain numerical solutions for the equation. Existence and stability of the approximate solutions are carried out by using the right shifted Grunwald formula for the fractional derivative term in the spatial direction. Error estimate of order $O({\Delta}x+{\Delta}t)$ is obtained in the discrete $L_2$ norm. The method is applied to a linear fractional dispersion equations in order to see the theoretical order of convergence. Numerical results for a nonlinear problem show that the numerical solution approach the solution of classical diffusion equation as fractional order approaches 2.

EXISTENCE AND LONG-TIME BEHAVIOR OF SOLUTIONS TO NAVIER-STOKES-VOIGT EQUATIONS WITH INFINITE DELAY

  • Anh, Cung The;Thanh, Dang Thi Phuong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.379-403
    • /
    • 2018
  • In this paper we study the first initial boundary value problem for the 3D Navier-Stokes-Voigt equations with infinite delay. First, we prove the existence and uniqueness of weak solutions to the problem by combining the Galerkin method and the energy method. Then we prove the existence of a compact global attractor for the continuous semigroup associated to the problem. Finally, we study the existence and exponential stability of stationary solutions.

Dynamic Analysis of an Optical Disk Drive with an Automatic Ball Balancer (자동볼평형장치가 부착된 광디스크 드라이브의 동특성해석)

  • Kim, Kang-Sung;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2511-2518
    • /
    • 2002
  • Dynamic behaviors and stability of an optical disk drive coupled with an automatic ball balancer (ABB) are analyzed by a theoretical approach. The feeding system is modeled a rigid body with six degree-of-freedom. Using Lagrange's equation, we derive the nonlinear equations of motion for a non -autonomous system with respect to the rectangular coordinate. To investigate the dynamic stability of the system in the neighborhood of the equilibrium positions, the monodromy matrix technique is applied to the perturbed equations. On the other hand, time responses are computed by the Runge -Kutta method. We also investigate the effects of the damping coefficient and the position of ABB on the dynamic behaviors of the system.

A NEW FIFTH-ORDER WEIGHTED RUNGE-KUTTA ALGORITHM BASED ON HERONIAN MEAN FOR INITIAL VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS

  • CHANDRU, M.;PONALAGUSAMY, R.;ALPHONSE, P.J.A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.191-204
    • /
    • 2017
  • A new fifth-order weighted Runge-Kutta algorithm based on heronian mean for solving initial value problem in ordinary differential equations is considered in this paper. Comparisons in terms of numerical accuracy and size of the stability region between new proposed Runge-Kutta(5,5) algorithm, Runge-Kutta (5,5) based on Harmonic Mean, Runge-Kutta(5,5) based on Contra Harmonic Mean and Runge-Kutta(5,5) based on Geometric Mean are carried out as well. The problems, methods and comparison criteria are specified very carefully. Numerical experiments show that the new algorithm performs better than other three methods in solving variety of initial value problems. The error analysis is discussed and stability polynomials and regions have also been presented.

A new algorithm for power system stability calculations (전력계통안정도 계산앨고리즘의 개선에 관한 연구)

  • 박영문
    • 전기의세계
    • /
    • v.29 no.3
    • /
    • pp.193-200
    • /
    • 1980
  • A new algorithm for power system stability calculations is developed which considers the nonlinear state equations of 8 state variables for each generator dynamics, expollential load models in respect to bus voltages for nonlinear loads, network equations expressed in terms of bus-injected current sources, various kinds of generator and transmission line outages, abrupt changes in loads, and operations of various kinds of portective relaying systems such as distance relaying, reclosing load shedding by under-frequency relays. In the algorithm are included efficient and reliable schemes for solving network equations by means of the Newton-Raphson iterative method and the Optimally-Ordered Triangular Factorization Technique, and simple procedures for determining fault-point negative and zero sequence impedances for unbalanced line faults. An application of the Optimally-Ordered Triangular Factorization Techniques results in remarkable savings in computing time and memory requirements.

  • PDF

ADDITIVE ρ-FUNCTIONAL EQUATIONS IN β-HOMOGENEOUS F-SPACES

  • Shim, EunHwa
    • The Pure and Applied Mathematics
    • /
    • v.24 no.4
    • /
    • pp.243-251
    • /
    • 2017
  • In this paper, we solve the additive ${\rho}-functional$ equations (0.1) $f(x+y)+f(x-y)-2f(x)={\rho}(2f(\frac{x+y}{2})+f(x-y)-2f(x))$, and (0.2) $2f(\frac{x+y}{2})+f(x-y)-2f(x)={\rho}(f(x+y)+f(x-y)-2f(x))$, where ${\rho}$ is a fixed (complex) number with ${\rho}{\neq}1$, Using the direct method, we prove the Hyers-Ulam stability of the additive ${\rho}-functional$ equations (0.1) and (0.2) in ${\beta}-homogeneous$ (complex) F-spaces.