ADDITIVE ρ-FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN BANACH SPACE

Siriluk Paokanta ${ }^{\text {a }}$ \& Eon Hwa Shim ${ }^{\text {b,* }}$

Abstract. In this paper, we solve the additive ρ-functional equations
(0.1) $f(x+y)+f(x-y)-2 f(x)=\rho\left(2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right)$,
where ρ is a fixed non-Archimedean number with $|\rho|<1$, and
(0.2) $2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)=\rho(f(x+y)+f(x-y)-2 f(x))$,
where ρ is a fixed non-Archimedean number with $|\rho|<|2|$.
Furthermore, we prove the Hyers-Ulam stability of the additive ρ-functional equations (0.1) and (0.2) in non-Archimedean Banach spaces.

1. Introduction and Preliminaries

A valuation is a function $|\cdot|$ from a field K into $[0, \infty)$ such that 0 is the unique element having the 0 valuation, $|r s|=|r| \cdot|s|$ and the triangle inequality holds, i.e.,

$$
|r+s| \leq|r|+|s|, \quad \forall r, s \in K
$$

A field K is called a valued field if K carries a valuation. The usual absolute values of \mathbb{R} and \mathbb{C} are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If the triangle inequality is replaced by

$$
|r+s| \leq \max \{|r|,|s|\}, \quad \forall r, s \in K
$$

then the function $|\cdot|$ is called a non-Archimedean valuation, and the field is called a non-Archimedean field. Clearly $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$. A trivial

Received by the editors June 08, 2018. Accepted August 03, 2018.
2010 Mathematics Subject Classification. Primary 46S10, 39B62, 39B52, 47S10, 12 J 25.
Key words and phrases. Hyers-Ulam stability, non-Archimedean normed space, additive ρ functional equation.

* Corresponding author.
example of a non-Archimedean valuation is the function | . | taking everything except for 0 into 1 and $|0|=0$.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence call it simply a field.

Definition 1.1 ([7]). Let X be a vector space over a field K with a non-Archimedean valuation | • |. A function $\|\cdot\|: X \rightarrow[0, \infty)$ is said to be a non-Archimedean norm if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii) $\|r x\|=|r|\|x\| \quad(r \in K, x \in X)$;
(iii) the strong triangle inequality

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\}, \quad \forall x, y \in X
$$

holds. Then $(X,\|\cdot\|)$ is called a non-Archimedean normed space.
Definition 1.2. (i) Let $\left\{x_{n}\right\}$ be a sequence in a non-Archimedean normed space X. Then the sequence $\left\{x_{n}\right\}$ is called Cauchy if for a given $\varepsilon>0$ there is a positive integer N such that

$$
\left\|x_{n}-x_{m}\right\| \leq \varepsilon
$$

for all $n, m \geq N$.
(ii) Let $\left\{x_{n}\right\}$ be a sequence in a non-Archimedean normed space X. Then the sequence $\left\{x_{n}\right\}$ is called convergent if for a given $\varepsilon>0$ there are a positive integer N and an $x \in X$ such that

$$
\left\|x_{n}-x\right\| \leq \varepsilon
$$

for all $n \geq N$. Then we call $x \in X$ a limit of the sequence $\left\{x_{n}\right\}$, and denote by $\lim _{n \rightarrow \infty} x_{n}=x$.
(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space X is called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam [10] concerning the stability of group homomorphisms. Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Rassias [8] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach. The functional equation $f(x+y)+f(x-y)=2 f(x)$ is called the Jensen type additive equation.

The functional equation $f(x+y)+f(x-y)=2 f(x)+2 f(y)$ is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The stability of quadratic functional equation was proved by Skof [9] for mappings $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space. Cholewa [4] noticed that the theorem of Skof is still true if the relevant domain E_{1} is replaced by an Abelian group. The stability problems of various functional equations have been extensively investigated by a number of authors (see $[2,3]$).

In this paper, we solve the additive ρ-functional equations (0.1) and (0.2) and prove the Hyers-Ulam stability of the additive ρ-functional equations (0.1) and (0.2) in non-Archimedean Banach spaces.

Throughout this paper, assume that X is a non-Archimedean normed space and that Y is a non-Archimedean Banach space. Let $|2| \neq 1$.

2. Additive ρ-functional Equation (0.1) in Non-Archimedean Normed Spaces

Throughout this section, assume that ρ is a fixed non-Archimedean number with $|\rho|<1$.

In this section, we solve the additive ρ-functional equation (0.1) in non-Archimedean normed spaces.

Lemma 2.1. If a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{equation*}
f(x+y)+f(x-y)-2 f(x)=\rho\left(2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$, then $f: X \rightarrow Y$ is additive.
Proof. Assume that $f: X \rightarrow Y$ satisfies (2.1).
Letting $y=x$ in (2.1), we get $f(2 x)-2 f(x)=0$ and so $f(2 x)=2 f(x)$ for all $x \in X$. Thus

$$
\begin{equation*}
f\left(\frac{x}{2}\right)=\frac{1}{2} f(x) \tag{2.2}
\end{equation*}
$$

for all $x \in X$.
It follows from (2.1) and (2.2) that

$$
\begin{aligned}
f(x+y)+f(x-y)-2 f(x) & =\rho\left(2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right) \\
& =\rho(f(x+y)+f(x-y)-2 f(x))
\end{aligned}
$$

and so $f(x+y)+f(x-y)=2 f(x)$ for all $x, y \in X$. It is easy to show that f is additive.

We prove the Hyers-Ulam stability of the additive ρ-functional equation (2.1) in non-Archimedean Banach spaces.

Theorem 2.2. Let $r<1$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \left\|f(x+y)+f(x-y)-2 f(x)-\rho\left(2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)\right)\right\| \\
& \quad \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{2.3}
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2 \theta}{|2|^{r}}\|x\|^{r} \tag{2.4}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=x$ in (2.3), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leq 2 \theta\|x\|^{r} \tag{2.5}
\end{equation*}
$$

for all $x \in X$. So $\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \frac{2}{|2|^{r}} \theta\|x\|^{r}$ for all $x \in X$. Hence

$$
\text { (2.6) }\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|
$$

$$
\leq \max \left\{\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{l+1} f\left(\frac{x}{2^{l+1}}\right)\right\|, \cdots,\left\|2^{m-1} f\left(\frac{x}{2^{m-1}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|\right\}
$$

$$
=\max \left\{|2|^{l}\left\|f\left(\frac{x}{2^{l}}\right)-2 f\left(\frac{x}{2^{l+1}}\right)\right\|, \cdots,|2|^{m-1}\left\|f\left(\frac{x}{2^{m-1}}\right)-2 f\left(\frac{x}{2^{m}}\right)\right\|\right\}
$$

$$
\leq \max \left\{\frac{|2|^{l}}{|2|^{r l+r}}, \cdots, \frac{|2|^{m-1}}{|2|^{r(m-1)+r}}\right\} 2 \theta\|x\|^{r}=\frac{2 \theta}{|2|^{(r-1) l+r}}\|x\|^{r}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.6) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.6), we get (2.4).

It follows from (2.3) that

$$
\begin{aligned}
& \left\|A(x+y)+A(x-y)-2 A(x)-\rho\left(2 A\left(\frac{x+y}{2}\right)+A(x-y)-2 A(x)\right)\right\| \\
& \begin{array}{l}
=\lim _{n \rightarrow \infty}|2|^{n} \| f\left(\frac{x+y}{2^{n}}\right)+f\left(\frac{x-y}{2^{n}}\right)-2 f\left(\frac{x}{2^{n}}\right) \\
\quad-\rho\left(2 f\left(\frac{x+y}{2^{n+1}}\right)+f\left(\frac{x-y}{2^{n}}\right)-2 f\left(\frac{x}{2^{n}}\right)\right) \| \\
\leq \lim _{n \rightarrow \infty} \frac{|2|^{n} \theta}{|2|^{n r}}\left(\|x\|^{r}+\|y\|^{r}\right)=0
\end{array}
\end{aligned}
$$

for all $x, y \in X$. So

$$
A(x+y)+A(x-y)-2 A(x)=\rho\left(2 A\left(\frac{x+y}{2}\right)+A(x-y)-2 A(x)\right)
$$

for all $x, y \in X$. By Lemma 2.1, the mapping $A: X \rightarrow Y$ is additive .
Now, let $T: X \rightarrow Y$ be another additive mapping satisfying (2.4). Then we have

$$
\begin{aligned}
\|A(x)-T(x)\| & =\left\|2^{q} A\left(\frac{x}{2^{q}}\right)-2^{q} T\left(\frac{x}{2^{q}}\right)\right\| \\
& \leq \max \left\{\left\|2^{q} A\left(\frac{x}{2^{q}}\right)-2^{q} f\left(\frac{x}{2^{q}}\right)\right\|,\left\|2^{q} T\left(\frac{x}{2^{q}}\right)-2^{q} f\left(\frac{x}{2^{q}}\right)\right\|\right\} \\
& \leq \frac{2 \theta}{|2|^{(r-1) q+r}}\|x\|^{r},
\end{aligned}
$$

which tends to zero as $q \rightarrow \infty$ for all $x \in X$. So we can conclude that $A(x)=T(x)$ for all $x \in X$. This proves the uniqueness of h. Thus the mapping $A: X \rightarrow Y$ is a unique additive mapping satisfying (2.4).

Theorem 2.3. Let $r>1$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and (2.3). Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\|f(x)-A(x)\| \leq \frac{2 \theta}{|2|}\|x\|^{r}
$$

for all $x \in X$.
Proof. It follows from (2.5) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{2}{|2|} \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{aligned}
& \left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| \\
& \quad \leq \max \left\{\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{l+1}} f\left(2^{l+1} x\right)\right\|, \cdots,\left\|\frac{1}{2^{m-1}} f\left(2^{m-1} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\|\right\} \\
& \quad=\max \left\{\frac{1}{|2|^{l}}\left\|f\left(2^{l} x\right)-\frac{1}{2} f\left(2^{l+1} x\right)\right\|, \cdots, \frac{1}{|2|^{m-1}}\left\|f\left(2^{m-1} x\right)-\frac{1}{2} f\left(2^{m} x\right)\right\|\right\} \\
& \quad \leq \max \left\{\frac{|2|^{l r}}{|2|^{l+1}}, \cdots, \frac{|2|^{r(m-1)}}{|2|^{(m-1)+1}}\right\} 2 \theta\|x\|^{r}=\frac{2 \theta}{|2|^{(1-r) l+1}}\|x\|^{r}
\end{aligned}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.2.

3. Additive ρ-functional Equation (0.2)

Throughout this section, assume that ρ is a fixed non-Archimedean number with $|\rho|<|2|$.

In this section, we solve the additive ρ-functional equation (0.2) in non-Archimedean normed spaces.

Lemma 3.1. If a mapping $f: X \rightarrow Y$ satisfies
(3.1) $2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)=\rho(f(x+y)+f(x-y)-2 f(x))$
for all $x, y \in X$, then $f: X \rightarrow Y$ is additive.
Proof. Assume that $f: X \rightarrow Y$ satisfies (3.1).
Letting $x=y=0$ in (3.1), we get $f(0)=0$.
Letting $y=0$ in (3.1), we get

$$
\begin{equation*}
2 f\left(\frac{x}{2}\right)=f(x) \tag{3.2}
\end{equation*}
$$

for all $x \in X$.
It follows from (3.1) and (3.2) that

$$
\begin{aligned}
f(x+y)+f(x-y)-2 f(x) & =2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x) \\
& =\rho(f(x+y)+f(x-y)-2 f(x))
\end{aligned}
$$

and so $f(x+y)+f(x-y)=2 f(x)$ for all $x, y \in X$. It is easy to show that f is additive.

We prove the Hyers-Ulam stability of the additive ρ-functional equation (3.1) in non-Archimedean Banach spaces.

Theorem 3.2. Let $r<1$ and θ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{align*}
& \left\|2 f\left(\frac{x+y}{2}\right)+f(x-y)-2 f(x)-\rho(f(x+y)+f(x-y)-2 f(x))\right\| \tag{3.3}\\
& \quad \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right)
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \theta\|x\|^{r} \tag{3.4}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=0$ in (3.3), we get

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)-f(x)\right\| \leq \theta\|x\|^{r} \tag{3.5}
\end{equation*}
$$

for all $x \in X$. So

$$
\begin{align*}
& \left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| \tag{3.6}\\
& \quad \leq \max \left\{\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{l+1} f\left(\frac{x}{2^{l+1}}\right)\right\|, \cdots,\left\|2^{m-1} f\left(\frac{x}{2^{m-1}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|\right\} \\
& \quad=\max \left\{|2|^{l}\left\|f\left(\frac{x}{2^{l}}\right)-2 f\left(\frac{x}{2^{l+1}}\right)\right\|, \cdots,|2|^{m-1}\left\|f\left(\frac{x}{2^{m-1}}\right)-2 f\left(\frac{x}{2^{m}}\right)\right\|\right\} \\
& \quad \leq \max \left\{\frac{|2|^{l}}{|2|^{r l}}, \cdots, \frac{|2|^{m-1}}{|2|^{r(m-1)}}\right\} \theta\|x\|^{r}=\frac{\theta}{|2|^{(r-1) l}}\|x\|^{r}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.6) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.6), we get (3.4).

The rest of the proof is similar to the proof of Theorem 2.2.
Theorem 3.3. Let $r>1$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (3.3). Then there exists a unique additive mapping $A: X \rightarrow Y$
such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{|2|^{r} \theta}{|2|}\|x\|^{r} \tag{3.7}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (3.5) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{|2|^{r} \theta}{|2|}\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\| \frac{1}{2^{2^{\prime}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right) \|} \begin{align*}
& \quad \leq \max \left\{\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{l+1}} f\left(2^{l+1} x\right)\right\|, \cdots,\left\|\frac{1}{2^{m-1}} f\left(2^{m-1} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\|\right\} \tag{3.8}\\
& \quad=\max \left\{\frac{1}{|2|^{l}}\left\|f\left(2^{l} x\right)-\frac{1}{2} f\left(2^{l+1} x\right)\right\|, \cdots, \frac{1}{|2|^{m-1}}\left\|f\left(2^{m-1} x\right)-\frac{1}{2} f\left(2^{m} x\right)\right\|\right\} \\
& \quad \leq \max \left\{\frac{|2|^{\mid l}}{|2|^{l+1}}, \cdots, \frac{|2|^{r(m-1)}}{|2|^{(m-1)+1}}\right\}|2|^{r} \theta\|x\|^{r}=\frac{|2|^{r} \theta}{|2|^{(1-r) l+1}}\|x\|^{r}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.8) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{1}{n} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.8), we get (3.7).

The rest of the proof is similar to the proofs of Theorems 2.2 and 3.2.

Acknowledgments

S. Paokanta was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2017R1D1A1B04032937).

References

1. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
2. L. Cădariu, L. Găvruta \& P. Găvruta: On the stability of an affine functional equation. J. Nonlinear Sci. Appl. 6 (2013), 60-67.
3. A. Chahbi \& N. Bounader: On the generalized stability of d'Alembert functional equation. J. Nonlinear Sci. Appl. 6 (2013), 198-204.
4. P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86.
5. P. Gǎvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-43.
6. D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
7. M.S. Moslehian \& Gh. Sadeghi: A Mazur-Ulam theorem in non-Archimedean normed spaces. Nonlinear Anal.-TMA 69 (2008), 3405-3408.
8. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.
9. F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
10. S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.
${ }^{\text {a }}$ Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
Email address: siriluk22@hanyang.ac.kr
${ }^{\text {b }}$ Department of Mathematics, Daejin University, Kyunggi 11159, Korea
Email address: stareun01@nate.com
