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ADDITIVE ρ-FUNCTIONAL EQUATIONS IN

NON-ARCHIMEDEAN BANACH SPACE

Siriluk Paokanta a & Eon Hwa Shim b, ∗

Abstract. In this paper, we solve the additive ρ-functional equations

f(x+ y) + f(x− y)− 2f(x) = ρ
(
2f

(x+ y

2

)
+ f(x− y)− 2f(x)

)
,(0.1)

where ρ is a fixed non-Archimedean number with |ρ| < 1, and

2f
(x+ y

2

)
+ f(x− y)− 2f(x) = ρ(f(x+ y) + f(x− y)− 2f(x)),(0.2)

where ρ is a fixed non-Archimedean number with |ρ| < |2|.
Furthermore, we prove the Hyers-Ulam stability of the additive ρ-functional

equations (0.1) and (0.2) in non-Archimedean Banach spaces.

1. Introduction and Preliminaries

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique

element having the 0 valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.

A field K is called a valued field if K carries a valuation. The usual absolute values

of R and C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle

inequality. If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,

then the function | · | is called a non-Archimedean valuation, and the field is called

a non-Archimedean field. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. A trivial
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example of a non-Archimedean valuation is the function | · | taking everything

except for 0 into 1 and |0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field,

hence call it simply a field.

Definition 1.1 ([7]). LetX be a vector space over a fieldK with a non-Archimedean

valuation | · |. A function ∥ · ∥ : X → [0,∞) is said to be a non-Archimedean

norm if it satisfies the following conditions:

(i) ∥x∥ = 0 if and only if x = 0;

(ii) ∥rx∥ = |r|∥x∥ (r ∈ K,x ∈ X);

(iii) the strong triangle inequality

∥x+ y∥ ≤ max{∥x∥, ∥y∥}, ∀x, y ∈ X

holds. Then (X, ∥ · ∥) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {xn} be a sequence in a non-Archimedean normed space

X. Then the sequence {xn} is called Cauchy if for a given ε > 0 there is a positive

integer N such that

∥xn − xm∥ ≤ ε

for all n,m ≥ N .

(ii) Let {xn} be a sequence in a non-Archimedean normed space X. Then the

sequence {xn} is called convergent if for a given ε > 0 there are a positive integer N

and an x ∈ X such that

∥xn − x∥ ≤ ε

for all n ≥ N . Then we call x ∈ X a limit of the sequence {xn}, and denote by

limn→∞ xn = x.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed

space X is called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam

[10] concerning the stability of group homomorphisms. Hyers [6] gave a first affirma-

tive partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was

generalized by Aoki [1] for additive mappings and by Rassias [8] for linear mappings

by considering an unbounded Cauchy difference. A generalization of the Rassias

theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy differ-

ence by a general control function in the spirit of Rassias’ approach. The functional

equation f (x+ y) + f(x− y) = 2f(x) is called the Jensen type additive equation.
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The functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y) is called the qua-

dratic functional equation. In particular, every solution of the quadratic functional

equation is said to be a quadratic mapping. The stability of quadratic functional

equation was proved by Skof [9] for mappings f : E1 → E2, where E1 is a normed

space and E2 is a Banach space. Cholewa [4] noticed that the theorem of Skof is

still true if the relevant domain E1 is replaced by an Abelian group. The stability

problems of various functional equations have been extensively investigated by a

number of authors (see [2, 3]).

In this paper, we solve the additive ρ-functional equations (0.1) and (0.2) and

prove the Hyers-Ulam stability of the additive ρ-functional equations (0.1) and (0.2)

in non-Archimedean Banach spaces.

Throughout this paper, assume that X is a non-Archimedean normed space and

that Y is a non-Archimedean Banach space. Let |2| ̸= 1.

2. Additive ρ-functional Equation (0.1) in Non-Archimedean
Normed Spaces

Throughout this section, assume that ρ is a fixed non-Archimedean number with

|ρ| < 1.

In this section, we solve the additive ρ-functional equation (0.1) in non-Archimedean

normed spaces.

Lemma 2.1. If a mapping f : X → Y satisfies f(0) = 0 and

f(x+ y) + f(x− y)− 2f(x) = ρ

(
2f

(
x+ y

2

)
+ f (x− y)− 2f(x)

)
(2.1)

for all x, y ∈ X, then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (2.1).

Letting y = x in (2.1), we get f(2x) − 2f(x) = 0 and so f(2x) = 2f(x) for all

x ∈ X. Thus

f
(x
2

)
=

1

2
f(x)(2.2)

for all x ∈ X.

It follows from (2.1) and (2.2) that

f(x+ y) + f(x− y)− 2f(x) = ρ

(
2f

(
x+ y

2

)
+ f (x− y)− 2f(x)

)
= ρ(f(x+ y) + f(x− y)− 2f(x))
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and so f(x + y) + f(x − y) = 2f(x) for all x, y ∈ X. It is easy to show that f is

additive. �

We prove the Hyers-Ulam stability of the additive ρ-functional equation (2.1) in

non-Archimedean Banach spaces.

Theorem 2.2. Let r < 1 and θ be nonnegative real numbers and let f : X → Y be

a mapping satisfying f(0) = 0 and∥∥∥∥f(x+ y) + f(x− y)− 2f(x)− ρ

(
2f

(
x+ y

2

)
+ f (x− y)− 2f(x)

)∥∥∥∥
≤ θ(∥x∥r + ∥y∥r)(2.3)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)−A(x)∥ ≤ 2θ

|2|r
∥x∥r(2.4)

for all x ∈ X.

Proof. Letting y = x in (2.3), we get

∥f(2x)− 2f(x)∥ ≤ 2θ∥x∥r(2.5)

for all x ∈ X. So
∥∥f(x)− 2f

(
x
2

)∥∥ ≤ 2
|2|r θ∥x∥

r for all x ∈ X. Hence∥∥∥2lf ( x
2l

)
− 2mf

( x

2m

)∥∥∥(2.6)

≤ max
{∥∥∥2lf ( x

2l

)
− 2l+1f

( x

2l+1

)∥∥∥ , · · · ,∥∥∥2m−1f
( x

2m−1

)
− 2mf

( x

2m

)∥∥∥}
= max

{
|2|l
∥∥∥f ( x

2l

)
− 2f

( x

2l+1

)∥∥∥ , · · · , |2|m−1
∥∥∥f ( x

2m−1

)
− 2f

( x

2m

)∥∥∥}
≤ max

{
|2|l

|2|rl+r
, · · · , |2|m−1

|2|r(m−1)+r

}
2θ∥x∥r = 2θ

|2|(r−1)l+r
∥x∥r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.6)

that the sequence {2nf( x
2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence {2nf( x
2n )} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

2nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→ ∞ in (2.6), we get

(2.4).
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It follows from (2.3) that∥∥∥∥A(x+ y) +A(x− y)− 2A(x)− ρ

(
2A

(
x+ y

2

)
+A (x− y)− 2A(x)

)∥∥∥∥
= lim

n→∞
|2|n

∥∥∥∥f (x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

( x
2n

)
−ρ
(
2f

(
x+ y

2n+1

)
+ f

(
x− y

2n

)
− 2f

( x
2n

))∥∥∥∥
≤ lim

n→∞

|2|nθ
|2|nr

(∥x∥r + ∥y∥r) = 0

for all x, y ∈ X. So

A(x+ y) +A(x− y)− 2A(x) = ρ

(
2A

(
x+ y

2

)
+A (x− y)− 2A(x)

)
for all x, y ∈ X. By Lemma 2.1, the mapping A : X → Y is additive .

Now, let T : X → Y be another additive mapping satisfying (2.4). Then we have

∥A(x)− T (x)∥ =
∥∥∥2qA( x

2q

)
− 2qT

( x
2q

)∥∥∥
≤ max

{∥∥∥2qA( x
2q

)
− 2qf

( x
2q

)∥∥∥ ,∥∥∥2qT ( x
2q

)
− 2qf

( x
2q

)∥∥∥}
≤ 2θ

|2|(r−1)q+r
∥x∥r,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that A(x) = T (x)

for all x ∈ X. This proves the uniqueness of h. Thus the mapping A : X → Y is a

unique additive mapping satisfying (2.4). �

Theorem 2.3. Let r > 1 and θ be nonnegative real numbers and let f : X → Y be a

mapping satisfying f(0) = 0 and (2.3). Then there exists a unique additive mapping

A : X → Y such that

∥f(x)−A(x)∥ ≤ 2θ

|2|
∥x∥r

for all x ∈ X.

Proof. It follows from (2.5) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 2

|2|
θ∥x∥r
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for all x ∈ X. Hence∥∥∥∥ 12l f (2lx)− 1

2m
f (2mx)

∥∥∥∥
≤ max

{∥∥∥∥ 12l f (2lx)− 1

2l+1
f
(
2l+1x

)∥∥∥∥ , · · · ,∥∥∥∥ 1

2m−1
f
(
2m−1x

)
− 1

2m
f (2mx)

∥∥∥∥}
= max

{
1

|2|l

∥∥∥∥f (2lx)− 1

2
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|2|m−1

∥∥∥∥f (2m−1x
)
− 1

2
f (2mx)

∥∥∥∥}
≤ max

{
|2|lr

|2|l+1
, · · · , |2|r(m−1)

|2|(m−1)+1

}
2θ∥x∥r = 2θ

|2|(1−r)l+1
∥x∥r

for all nonnegative integers m and l with m > l and all x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.2. �

3. Additive ρ-functional Equation (0.2)

Throughout this section, assume that ρ is a fixed non-Archimedean number with

|ρ| < |2|.
In this section, we solve the additive ρ-functional equation (0.2) in non-Archimedean

normed spaces.

Lemma 3.1. If a mapping f : X → Y satisfies

2f

(
x+ y

2

)
+ f (x− y)− 2f(x) = ρ(f(x+ y) + f(x− y)− 2f(x))(3.1)

for all x, y ∈ X, then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (3.1).

Letting x = y = 0 in (3.1), we get f(0) = 0.

Letting y = 0 in (3.1), we get

2f
(x
2

)
= f(x)(3.2)

for all x ∈ X.

It follows from (3.1) and (3.2) that

f(x+ y) + f(x− y)− 2f(x) = 2f

(
x+ y

2

)
+ f (x− y)− 2f(x)

= ρ(f(x+ y) + f(x− y)− 2f(x))

and so f(x + y) + f(x − y) = 2f(x) for all x, y ∈ X. It is easy to show that f is

additive. �
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We prove the Hyers-Ulam stability of the additive ρ-functional equation (3.1) in

non-Archimedean Banach spaces.

Theorem 3.2. Let r < 1 and θ be nonnegative real numbers, and let f : X → Y be

a mapping such that∥∥∥∥2f (x+ y

2

)
+ f (x− y)− 2f(x)− ρ(f(x+ y) + f(x− y)− 2f(x))

∥∥∥∥(3.3)

≤ θ(∥x∥r + ∥y∥r)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)−A(x)∥ ≤ θ∥x∥r(3.4)

for all x ∈ X.

Proof. Letting y = 0 in (3.3), we get∥∥∥2f (x
2

)
− f(x)

∥∥∥ ≤ θ∥x∥r(3.5)

for all x ∈ X. So

∥∥∥2lf ( x
2l

)
− 2mf

( x

2m

)∥∥∥
(3.6)

≤ max
{∥∥∥2lf ( x

2l

)
− 2l+1f

( x

2l+1

)∥∥∥ , · · · ,∥∥∥2m−1f
( x

2m−1

)
− 2mf

( x

2m

)∥∥∥}
= max

{
|2|l
∥∥∥f ( x

2l

)
− 2f

( x

2l+1

)∥∥∥ , · · · , |2|m−1
∥∥∥f ( x

2m−1

)
− 2f

( x

2m

)∥∥∥}
≤ max

{
|2|l

|2|rl
, · · · , |2|m−1

|2|r(m−1)

}
θ∥x∥r = θ

|2|(r−1)l
∥x∥r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.6)

that the sequence {2nf( x
2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete,

the sequence {2nf( x
2n )} converges. So one can define the mapping A : X → Y by

A(x) := lim
n→∞

2nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→ ∞ in (3.6), we get

(3.4).

The rest of the proof is similar to the proof of Theorem 2.2. �

Theorem 3.3. Let r > 1 and θ be positive real numbers, and let f : X → Y be a

mapping satisfying (3.3). Then there exists a unique additive mapping A : X → Y
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such that

∥f(x)−A(x)∥ ≤ |2|rθ
|2|

∥x∥r(3.7)

for all x ∈ X.

Proof. It follows from (3.5) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ |2|rθ
|2|

∥x∥r

for all x ∈ X. Hence

∥∥∥∥ 12l f(2lx)− 1

2m
f(2mx)

∥∥∥∥
(3.8)

≤ max

{∥∥∥∥ 12l f (2lx)− 1

2l+1
f
(
2l+1x

)∥∥∥∥ , · · · ,∥∥∥∥ 1

2m−1
f
(
2m−1x

)
− 1

2m
f (2mx)

∥∥∥∥}
= max

{
1

|2|l

∥∥∥∥f (2lx)− 1

2
f
(
2l+1x

)∥∥∥∥ , · · · , 1

|2|m−1

∥∥∥∥f (2m−1x
)
− 1

2
f (2mx)

∥∥∥∥}
≤ max

{
|2|rl

|2|l+1
, · · · , |2|r(m−1)

|2|(m−1)+1

}
|2|rθ∥x∥r = |2|rθ

|2|(1−r)l+1
∥x∥r

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from

(3.8) that the sequence { 1
2n f(2

nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
2n f(2

nx)} converges. So one can define the mapping

A : X → Y by

A(x) := lim
n→∞

1
n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→ ∞ in (3.8), we get

(3.7).

The rest of the proof is similar to the proofs of Theorems 2.2 and 3.2. �
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