• Title/Summary/Keyword: stability constants

Search Result 324, Processing Time 0.025 seconds

Synthesis and Analytical Application of Chelating Resins Containing Polyamines (폴리아민류를 작용기로 하는 킬레이트수지의 합성 및 분석적 응용)

  • Kim Sun Deuk;Park Jung Eun;Park Myon Yong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.652-660
    • /
    • 1992
  • The polyamine resins were synthesized by reacting amines such as diethylenetriamine(dien), triethylenetetramine(trien), tetraethylenepentamine(tetren), and pentaethylenehexamine(penten). Stepwise dissociation constants of amines, enthalpy and free energy of metal chelate were determined. Formation constants $(log k_1) of metal chelates were in order of Cu(Ⅱ) > Ni(Ⅱ) > Cd(Ⅱ) > Zn(Ⅱ) > Co(Ⅱ) and tendency of stabilities were proportional to nitrogen numbers of ligand such as dien < trien < tetren > penten. Elutional selectivites of metal ions on resin were agreed to formation constants of metal chelates. {\Delta}H and {\Delta}G were calculated by Van't Hoff equation. Stability constants (log k1) of metalic complexes were in order Cu(Ⅱ) > Ni(Ⅱ) > Cd(Ⅱ) > Zn(Ⅱ) > Co(Ⅱ), and tendency of stabilities were {\circledP}_L-Dien < {\circledP}_L-Trien < {\circledP}_L-Tetren < {\circledP}_L-Penten. The elutional selectivities of metal ions were agreed to stability constants of metal chelates.

  • PDF

Analytical Prediction of Chatter Vibration in Milling Process (밀링 가공 시 채터 진동 예측의 해석적 방법)

  • Jeong, Nak-Shin;Yang, Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.210-217
    • /
    • 2009
  • This paper presents the analytical prediction of stability lobes in milling. The stability lobes are obtained by measuring the frequency response function (FRF) of a machining center at the cutting point of the end mill cutter, identifying cutting constants, and approximating cutting force coefficients. The stability lobes are experimentally verified through cutting tests.

BOUNDEDNESS IN THE PERTURBED DIFFERENTIAL SYSTEMS

  • Goo, Yoon Hoe
    • The Pure and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.223-232
    • /
    • 2013
  • Alexseev's formula generalizes the variation of constants formula and permits the study of a nonlinear perturbation of a system with certain stability properties. In recent years M. Pinto introduced the notion of $h$-stability. S.K. Choi et al. investigated $h$-stability for the nonlinear differential systems using the notion of $t_{\infty}$-similarity. Applying these two notions, we study bounds for solutions of the perturbed differential systems.

Synthesis of Heptadentate Nitrogen-Oxygen Ligands (N4O3) with Substituting Groups and Determination of Stability Constants of Their Transition Metal(II) Complexes (치환기를 가진 일곱 자리 질소-산소(N4O3)계 리간드 합성과 전이금속(II) 이온 착물의 안정도상수 결정)

  • Kim, Sun-Deuk;Lee, Do-Hyub;Seol, Jong-Min
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.541-550
    • /
    • 2010
  • A new $N_4O_3$ heptadentate ligand, N,N'-Bis(2-hydroxybenzyl)-1,3-bis[(2-aminoethyl)amino]-2-propanol(H-BAP 4HCl)was synthesized. The hydrochloric acid salts of Br-BAP 4HCl, Cl-BAP 4HCl, $CH_3O$-BAP 4HCl and $CH_3$-BAP 4HCl containing Br-, Cl-, H-, $CH_3O-$ and $CH_{3^-}$ groups at the para-site of the phenol group of the H-BAP were synthesized. The structures of the ligands were confirmed by C. H. N. atomic analysis and $^1H$ NMR, $^{13}C$ NMR, UV-visible and mass spectra. The elemental stepwise protonation constants(${logK_n}^H$) of the synthesized $N_4O_3$ ligands showed six steps of the proton dissociation. The orders of the overall dissociation constants($log{\beta}_p$) of the ligands were Br-BAP < Cl-BAP < H-BAP < $CH_3O$-BAP < $CH_3$-BAP. The orders agreed well with that of Hammett substituent constants($\sigma_p$). The calculated stability constants($logK_{ML}$) between the ligands and transition metal ions agreed well with the order of the overall proton dissociation constants of the ligands but they showed a reverse order in Hammestt substituent constants($\sigma_p$). The order of the stability constants between the transition metal ions with the ligands were Co(II) < Ni(II) < Cu(II) > Zn(II) > Cd(II) > Pb(II).

Diaza-18-crown-6 Ethers Containing Partially-fluorinated Benzyl Sidearms: Effects of Covalently Bonded Fluorine on the Alkali Metal Complexation

  • Chi, Ki-Whan;Shim, Kwang-Taeg;Huh, Hwang;Lee, Uk;Park, Young-Ja
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.393-398
    • /
    • 2005
  • The stability constants for the diaza-18-crown-6 ethers 2-6 and alkali metal cations ($Na^+,\;K^+,\;Rb^+\;and\;Cs^+$) were determined using potentiometry in 95% methanol. For each metal ion the stability constants of the partiallyfluorinated ligands 3-6 were larger than that of the non-fluorinated ligand 2, which might reflect an interaction between fluorine atoms and alkali metal cations. The stability constant of the ligand 4 was larger than that of the ligand 5 for each metal cation tested. This finding was also supported by the results of cation-induced chemical shifts in $^1H-,\;^{19}F$-NMR and extraction experiment. The potentiometry and NMR results as well as the X-ray crystal structures revealed that the position and number of fluorine atoms in the benzyl side arms was crucial for the enhanced interaction between a ligand and an alkali metal.

Stoichiometry and Stability of Complexes Formed between 18-Crown-6 as well as Digenzo-18-Crown-6 Ligands and a Few Metal Ions in Some Non-aqueous Binary Systems Using Square Wave Polarography

  • A. Nezhadali, Gh. Rounaghi;M. Chamasaz
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.7
    • /
    • pp.685-689
    • /
    • 2000
  • The complexation reaction between Pb2+,TI and Cd2+ions and macrocyclic ligands, 18-crown-6 ( 18C6) and dibenzo- 18-crown-6 (DB 18C6), was studied in dimethylsulfoxide (DMSO)-nitromethane (NM) and dimethyl-formamide (DMF)-nitromethane binary system s by square wave polarography (SWP) technique. The stoichiometry and stability of the complexes were determined by monitoring the shifts in half-waves or peak potentials of the polarographic waves of metal ions against the Iigand concentration. In most cases, the stability constants of complexes increase with increasing amounts of the nitromethane in mixed binary solvents used in this study. The complexes formed between 18C6 and DB18C6 and these metal cations in all cases had a stoichiometry of 1 : 1. The results obtained show that there is an inverse relationship between the formation constant of complexes and the donor number of solvents based on a Gatmann donocity scale and the stability constants show a high sensitivity to the composition of the mixed solvent systems. A linear behavior was observed for variation of log Kf of I8C6 complexes vs the composition of the mixed solvent systems in NM/DMSO and NM/DMF,but a non-linear behavior was observed in the case of DB 18C6 complexes in these binary systems. In most of the systems investigated, the Pb2+ cation forms a more stable complex with the 18C6 than other two cations and the order of selectivity of this Iigand for cations is: Pb2+ > TI+,Cd2+.

Kinetics of Denaturation of Human and Chicken Hemoglobins in the Presence of Co-solvents

  • Ajloo, Davood;Moosavi-Movahedi, Ali A.
    • BMB Reports
    • /
    • v.36 no.4
    • /
    • pp.367-372
    • /
    • 2003
  • The stability of four hemoglobins (Hb) in dimer forms (low concentration) were investigated by the kinetics of denaturation. The rate constants of denaturation were obtained by variation of 280 nm absorption versus time in 10 mM Tris-HCl, 10 mM EDTA, pH 8.0 at $45^{\circ}C$ in the absence and presence of 0.5 M ethanol, dimethyl sulfoxide (DMSO), formamide, and glycerol. The results show the trend of rate constants in different co-solvents in the following order: chicken hemolysate < human hemolysate and chicken Hb D < chicken Hb A. The buried surface area was calculated for Hb samples in the absence of cosolvents. Accordingly, the trend points out that: chicken Hb D > chicken Hb A > human Hb A. These results suggest that both chicken hemolysate and chicken Hb D are relatively more stable than human and chicken Hb A, respectively. However, the denaturation rate constants of Hb in different co-solvents have designated the following order: ethanol > DMSO > formamide > glycerol. As a matter of fact, this phenomenon is an indication of an increase in the denaturation capacity (DC) and hydrophobicity, and a decrease in the surface tension of the solution in the preceding co-solvents.

Protonation and Energetical Investigations of Calix[4]-cyclen-benzo-crown-6 and Its Complexes with Zinc and Copper

  • Boonchoo, Thanaporn;Pulpoka, Buncha;Ruangpprnvisuti, Vithaya
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.819-822
    • /
    • 2004
  • Protonation constants of calix[4]-cyclen-benzo-crown-6, L in 1X$10^{-2}$ M $Bu_4NCF_3SO_3$ in 40% $CH_2Cl_2/CH_3OH$ at $25^{\circ}C$ determined by potentiometric titration are log $K_1$ = 10.91, log $K_2$ = 10.30, log $K_3$ = 6.24 and log $K_4$ = 2.55. Stability constants for the receptor L complexes with Cu(II) and Zn(II) in 1X$10^{-2}$ M $Bu_4NCF_3SO_3$ in 40% $CH_2Cl_2/CH_3OH$ at $25^{\circ}C$ were determined by UV-VIS spectrometric titration. Stability constants of the CuL and ZnL complexes as log $\beta$ are 4.37 and 3.45, respectively. Stabilization energies for protonations of receptor L, derived from ab initio Hartree-Fock method with 6-31G basis set, are ${\Delta}E_1$ = -290.1, ${\Delta}E_2$ = -205.0, ${\Delta}E_3$ = -124.9 and ${\Delta}E_4$ = -26.9 kcal/mol and complexation energy of ZnL complex is -370.3 kcal/mol.

Comparison of the Stability Constants of Cd(II)-, Cu(II)-, and Pb(II)-Humate Complexes

  • Choi, Se-Young;Moon, Hi-Chung;Jun, Song-Hui;Chung, Kun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.581-584
    • /
    • 1994
  • A comparative investigation of the complexations of divalent metal ions (Cd, Cu, and Pb) by a well characterized soil humic acid (HA) from Okchun Metamorphic Belt was carried out in 0.05 M $KNO_3$ and pH of 4.5 using ion selective electrodes. A continuous distribution model based on the Scatchard Plot was used to determine the stability constants, because the constants obtained by this modeling technique takes the variations in binding energies into consideration without regards to the manner in which M(II) ion is bound on HA. The mean value of log $K_i$ were $4.05{\pm}0.60,\;4.92{\pm}0.36,\;and\;5.63{\pm}0.34\;{\ell}\;mol^{-1}$ for Cd(II)-, Pb(II), and Cu(II)-humate complexes respectively. The values of intrinsic constant (log $K_{int}$; binding at strongest site) were $7.12{\pm}0.30,\;6.59{\pm}0.32,\;and5.07{\pm}0.56\;{\ell}\; mol^{-1}$ in the order Cu(II) > Pb(II) > Cd(II) ion.

Protonation and Stability Constants for $Co^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Zn^{2+}$ of the Open-Chain Polyamine 1-Amino-13-(2-pyridyl)-3,6,9,12-tetraaza-tridecane. Crystal Structure of Its Nickel(Ⅱ) Complex

  • 김선덕;김준광;정우식
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.653-656
    • /
    • 1997
  • The new unsymmetric $N_6$ ligand 1-amino-13-(2-pyridyl)-3,6,9,12-tetraazatridecane (aptatd) containing one pyridyl group has been synthesized and characterized by EA, IR, and NMR. Its proton association constants $(log K_H^n)$ and stability constants $(log K_{ML})$ for Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) ions were determined at 298.1 K and ionic strength 0.100 mol $dm^{-3}$ (KNO₃) in aqueous solution by potentiometry: log $K_H^1$=8.80, log $K_H^2$=8.49, log $K_H^3$=6.84, log $K_H^4$=4.17, log $K_H^5$=3.47; log $K_{ML}(Co^{2+})$=18.00, log $K_{ML}(Ni^{2+})$=21.31, log $K_{ML}(Cu^{2+})$=23.62, log $K_{ML}(Zn^{2+})$=15.60. The X-ray structure of its nickel(Ⅱ) complex [Ni(aptatd)]$(ClO_4)_2$ are reported: orthorhombic space group Pbca, a=15.715(1) Å, b=14.280(2) Å, c=19.443(2) Å, V=4363.4 (9) ų with Z=8. The geometry around nickel is a distorted octahedron with the pyridine nitrogen atom being cis to the nitrogen atom of the terminal primary amine.